Just as a complement to @user357269's answer, I will mainly focus on explaining why we have the coefficient $\frac{cov(X_1,X_2)}{Var(X_1)}$.
It starts by acknowledging the following result about Bivariate normal: $(X_1,X_2)^T \sim N(\mu,\Sigma) \Rightarrow \exists$ a lower triangular matrix $A \in \mathbb{R}^{2 \times 2}$, and $Z_1, Z_2 \sim N(0,1) \; iid$ such that $(X_1,X_2)^T = A (Z_1,Z_2)^T + \mu$.
Furthermore, we have $AA^T = \Sigma =\pmatrix{Var(X_1) & cov(X_1,X_2)\\cov(X_1,X_2) & Var(X_2)}$.
Using Cholesky decomposition to solve A, we get $A=\pmatrix{\sqrt{Var(X_1)} & 0\\ \frac{cov(X_1,X_2)}{\sqrt{Var(X_1)}} & \sqrt{Var(X_2)-\frac{cov(X_1,X_2)^2}{Var(X_1)}}}$.
So, we can express $X_1 = \sqrt{Var(X_1)}Z_1 + \mu_1$ and $X_2=\frac{cov(X_1,X_2)}{\sqrt{Var(X_1)}} Z_1 + \sqrt{Var(X_2)-\frac{cov(X_1,X_2)^2}{Var(X_1)}} Z_2 + \mu_2$.
Since, $Z_1 \perp Z_2$, calculating the conditional expectation becomes much easier:
\begin{align*}
&E[X_2|X_1]\\
&=E[\frac{cov(X_1,X_2)}{\sqrt{Var(X_1)}} Z_1 + \sqrt{Var(X_2)-\frac{cov(X_1,X_2)^2}{Var(X_1)}} Z_2 + \mu_2|\sqrt{Var(X_1)} Z_1+ \mu_1]\\
&=E[\frac{cov(X_1,X_2)}{\sqrt{Var(X_1)}} Z_1 + \sqrt{Var(X_2)-\frac{cov(X_1,X_2)^2}{Var(X_1)}} Z_2 + \mu_2|Z_1]\\
&=\frac{cov(X_1,X_2)}{\sqrt{Var(X_1)}} Z_1 + \mu_2 \\
&= \frac{cov(X_1,X_2)}{Var(X_1)}(X_1 - \mu_1) + \mu_2
\end{align*}