-1

Find the minimum period of the following function : $f(x) = 3\sin(3x) + 2\cos^{2}(x)$

1 Answers1

1

Use this fact $$\\\sin^{2k+1}(ax+b) \to T=\dfrac{2\pi}{|a|}\ \\\cos^{2k+1}(ax+b) \to T=\dfrac{2\pi}{|a|}\\$$ $$f(x) = 3sin3x + 2cos^{2}x\\ f(x) = 3sin3x + 2\frac{1+cos 2x}{2}=\\3sin 3x+1+cos 2x\\\to\begin{cases}sin 3x& T_1=\frac{2\pi}{3}\\cos 2x & T_2=\frac{2\pi}{2}\end{cases}$$now find l.c.m for $T_1,T_2$ $$T=\dfrac{\pi}{3}[2,3]=\dfrac{\pi}{3}\times 6=2\pi$$

Khosrotash
  • 25,772