Let $\varphi$ be the standard normal density function.
The expected value of $X=\max\{Z,0\}$ is
$$
\operatorname{E}(X) = 0 \cdot \Pr(X=0) + \int_0^\infty x \varphi(x)\,dx.
$$
This integral is readily evaluated via the substitution $u = x^2/2$ and $du= x\,dx.$
In measure-theoretic language, we can define a measure $\nu$ by
$$
\nu(A)=\Pr(\max\{Z,0\} \in A) = \int_{A\,\setminus\,(-\infty,0]} \varphi(x)\,dx + \begin{cases} 1/2 & \text{if } 0\in A, \\ 0 & \text{otherwise.} \end{cases}
$$
Then the expected value of $X=\max\{Z,0\}$ is
$$
\operatorname{E}(X) = \int_{[0,\infty)} x \, \nu(dx) = \cdots\, (\text{as above}).
$$