If $(a,b) \sim (A,B)$ and $(c,d) \sim (C,D)$, where all pairs are whole numbers,
Prove that: $(a,b)*(c,d)\sim(A,B)*(C,D)$
Relation defined on the following:
$(a,b)\sim (A,B) \iff a+B=A+b$
$(c,d)\sim(C,D) \iff c+D=C+d$
For this I am assume we have to work a little backwards to show the proof, any tips on how to go about this.
$(a,b)+(c,d)=(a+c, b+d)$ and $(a,b)*(c,d)=(ac+bd, ad+bc)$