For any matrix $P$,
$$
e^P = I + P + {P^2 \over 2!} + {P^3 \over 3!} + \cdots + {P^n \over n!} + \cdots
$$
Thus, it follows that
$$
e^{A \over m} e^{B \over m} = I + {A \over m} + {B \over m} + O\left({1 \over m^2} \right)
$$
Since $e^{A \over m} e^{B \over m} \to I$ as $m \to \infty$, we see that
$e^{A \over m} e^{B \over m}$ is in the domain of the logarithm for all $m$ sufficiently large.
We also know that for all $n \times n$ matrices with $\Vert P \Vert < {1 \over 2}$,
$$
\log(I + P) = P + O(\Vert P \Vert^2)
$$
Hence, for large values of $m$, we have
$$
\log\left( e^{A \over m} e^{B \over m} \right) = \log\left( I + {A \over m} + {B \over m} + O\left({1 \over m^2} \right) \right)
$$
i.e.
$$
\log\left( e^{A \over m} e^{B \over m} \right) = {A \over m} + {B \over m} + O\left(
\left\Vert {A \over m} + {B \over m} + O\left({1 \over m^2}\right) \right\Vert^2 \right)
$$
Thus,
$$
\log\left( e^{A \over m} e^{B \over m} \right) = {A \over m} + {B \over m} + O\left( {1 \over m^2} \right)
$$
Exponentiating the logarithm, we get
$$
e^{A \over m} e^{B \over m} = \exp\left[ {A \over m} + {B \over m} + O\left( {1 \over m^2} \right) \right]
$$
Therefore,
$$
\left( e^{A \over m} e^{B \over m} \right)^m =
\exp\left[ A + B + O\left( {1 \over m} \right) \right]
$$
By the continuity of the exponential, we conclude that
$$
\lim\limits_{m \to \infty} \ \left( e^{A \over m} e^{B \over m} \right)^m
= exp(A + B)
$$
which proves the Lie product formula.