For $\mathbf x\in\mathbb (0,1)^n$ with $n>2$ and a positive integer $1\le k<n$, define the mapping $f_{i,j}\colon (0,1)^n\rightarrow (0,1)$ by, $$f_{i,j}(\mathbf x)= \sum\limits_{\substack{\mathcal A \subset \{ 1,\ldots,n\}\backslash \{i,j\}\\ |\mathcal A|=k-1}}\quad\left( \prod\limits_{l\not\in \mathcal A\cup \{i,j\} }x_l\,\,\cdot\!\!\!\! \prod\limits_{ l\in \mathcal A}(1-x_l)\right).$$
Convention: if the set of indexes is empty, the product is one.
I'm trying to prove that the matrix $$M=\begin{cases} m_{i,j}=f_{i,j}(\mathbf{x})\quad &\text{ if } j\neq i,\\ m_{i,j}=0&\text{ if } j=i\end{cases}$$ has full-rank, i.e. $\det(M)\neq 0$ (for $\mathbf{x}$ in $(0,1)^n$).
I proved this for two particular cases: $k=1$, $f_{i,j}(\mathbf x)= \prod\limits_{ k\neq i,j} x_k$ and so that case is quite easy. Also if $k=n-1$, $f_{i,j}(\mathbf x)= \prod\limits_{ k\neq i,j} (1-x_k)$, which is also an easy case. However, for $1<k<n-1$, I can only solve by using brute force. For example, for $k=2$ and $n=4$, the matrix is: $$\left(\begin{array}{cccc}0 & x_3(1-x_4)+x_4(1-x_3) & x_2(1-x_4)+x_4(1-x_2) & x_2(1-x_3)+x_3(1-x_2) \\ x_3(1-x_4)+x_4(1-x_3) & 0 & x_1(1-x_4)+x_4(1-x_1) & x_1(1-x_3)+x_3(1-x_1) \\ x_2(1-x_4)+x_4(1-x_2) & x_1(1-x_4)+x_4(1-x_1) & 0 & x_1(1-x_2)+x_2(1-x_1) \\x_2(1-x_3)+x_3(1-x_2) & x_1(1-x_3)+x_3(1-x_1) & x_1(1-x_2)+x_2(1-x_1) & 0\end{array}\right),$$ and using Mathematica, it can be shown that the determinant of $M$ is not zero for $\mathbf x \in (0,1)^4$.
But I'm lost trying to tackle the general case: any suggestions/hints (i.e., they need to be full answers) are very welcome.
Update: For several examples$-$ if we set $f_{i,j}(\mathbf x,\mathbf y)= \sum\limits_{\substack{\mathcal A \subset \{ 1,\ldots,n\}\backslash \{i,j\}\\ |\mathcal A|=k-1}}\quad\left( \prod\limits_{l\not\in \mathcal A\cup \{i,j\} }x_l\,\,\cdot\!\!\!\! \prod\limits_{ l\in \mathcal A}y_l\right)$, and compute the determinante of $M$ above. It is easy to see by inspection that all of terms of $\mathrm{det}(M)$ have the same signal. Perhaps, it would be easier to prove the result for this more general $f_{i,j}$.