How can I simulate the disjunction (OR) of the following two linear inequalities in terms of linear inequalities?:
$$ \begin{cases} a_1^\top x \geq b_1 \\ \text{or}\\ a_2^\top x \geq b_2 \end{cases} $$
Assumptions: elements of $a_i$, and $b$ are positive. $x$ is a binary vector.
Side note: when the inequalities are $\leq$ it is easy to do: $$ \begin{cases} a_1^\top x \leq b_1 \\ \text{or}\\ a_2^\top x \leq b_2 \end{cases} $$
We introduce another binary variable $y$, and the new linear inequalities is:
$$ \begin{cases} a_1^\top x - b_1 y \leq 0 \\ a_2^\top x - b_2 (1-y) \leq 0 \end{cases} $$
If $y = 1$, the first inequality is in place, while the second one is null (similar argument when $y = 0$)