I´ll be straightforward.
I encountered a pretty complex sum. I have tried to find a way of easily calculating Z($x,t$), but I haven´t been able to come up with anything. I will try to explain as clearly as I can the pattern of the sums.
Z1($x,t$) = ${0}\choose{0}$${x}\choose{1}$+${1}\choose{1}$${x+1}\choose{2}$+${2}\choose{2}$${x+2}\choose{3}$+${3}\choose{3}$${x+3}\choose{4}$+${4}\choose{4}$${x+4}\choose{5}$+...+${t-1}\choose{t-1}$${x+t-1}\choose{t}$
Z2($x,t$) = ${1}\choose{0}$${x+1}\choose{2}$+${2}\choose{1}$${x+2}\choose{3}$+${3}\choose{2}$${x+3}\choose{4}$+${4}\choose{3}$${x+4}\choose{5}$+${5}\choose{4}$${x+5}\choose{6}$+...+${t}\choose{t-1}$${x+t}\choose{t+1}$
Z3($x,t$) = ${2}\choose{0}$${x+2}\choose{3}$+${3}\choose{1}$${x+3}\choose{4}$+${4}\choose{2}$${x+4}\choose{5}$+${5}\choose{3}$${x+5}\choose{6}$+${6}\choose{4}$${x+6}\choose{7}$+...+${t+1}\choose{t-1}$${x+t+1}\choose{t+2}$
Z4($x,t$) = ${3}\choose{0}$${x+3}\choose{4}$+${4}\choose{1}$${x+4}\choose{5}$+${5}\choose{2}$${x+5}\choose{6}$+${6}\choose{3}$${x+6}\choose{7}$+${7}\choose{4}$${x+7}\choose{8}$+...+${t+2}\choose{t-1}$${x+t+2}\choose{t+3}$
...
I wrote them as binomial coefficients since I thought it would help. It´s easy to see how the diagonals of the first terms (the ones without x´s) form a pascal´s triangle.
The ${x+n}\choose{n+1}$ term could be seen as the nth summation of $x$, in the sense that
When n=0, ${x}\choose{1}$ = $x$
When n=1, ${x+1}\choose{2}$ = $\frac{x^2+x}{2}$ = S1($x$) = (summation of first $x$ integers)
When n=2, ${x+2}\choose{3}$ = $\frac{x^3+3x^2+2x}{6}$ = S2($x$) = (summation of the first $x$ summations of the first $x$ integers
...
In this sense ${x+n}\choose{n+1}$$-$${x-1+n}\choose{n+1}$=${x+n}\choose{n}$
= Sn($x$) $-$ Sn($x-1$) = Sn-1($x$)
Another way then of seeing the first table would be:
Z1($x,t$) = x + S1($x$) + S2($x$) + S3($x$) + S4($x$) + ... + St($x$)
Z2($x,t$) = S1($x$) + ($2$)S2($x$) + ($3$)S3($x$) + $(4)$S4($x$) +$(5)$S5($x$) + ... + ($t$)St+1($x$)
Z3($x,t$) = S2($x$) + $(3)$S3($x$) + $(6)$S4($x$) + $(10)$S5($x$) + $(15)$S6($x$) + ... + (S1($t$))St+2($x$)
Z4($x,t$) = S3($x$) + $(4)$S4($x$) + $(10)$S5($x$) + $(20)$S6($x$) + $(35)$S7$x$) + ... + (S2($t$))St+3($x$)
...
When $x = 1$
Z1($1,t$) = (1) + (1) + (1) + (1) + (1) + ... + (1) = Z2($1,t$)
Z2($1,t$) = (1) + (2) + (3) + (4) + (5) + ... + ($t$) = Z3($1,t$)
Z3($1,t$) = (1) + (3) + (6) + (10) + (15) + ... + S1($t$) = Z4($1,t$)
Z4($1,t$) = (1) + (4) + (10) + (20) + (35) + ... + S2($t$) = Z5($1,t$)
...
Some important facts that would be extremely helpful would be to know a function that approaches Zn($x,t$) as $t$ goes to infinity, or any sum that is similar to them.
Any thoughts would be really appreciated!