31

Given a random variable $X\sim\mathcal N(0,\sigma^2)$, how can we prove that $E[X^4]=3\sigma^4$? I am having trouble even starting with the proof.

Parcly Taxel
  • 105,904
foooyoh
  • 413
  • 1
  • 5
  • 4
  • Hint: $\int x^4p(x)dx$. Integrate by parts. –  Sep 07 '16 at 08:38
  • ... and then do partial integration a couple times :) – b00n heT Sep 07 '16 at 08:39
  • Or compute a bunch of derivatives of the moment generating function of $X$. – Surb Sep 07 '16 at 08:44
  • 2
    Hint: let $X=\sigma U$ where $U$ has standard normal distribution. Then $\mathbb EX^4=\mathbb E\sigma^4U^4=\sigma^4\mathbb EU^4$. It remains to prove that $\mathbb EU^4=3$. For this see the other hints. If in calculations parameters can be avoided then do so. – drhab Sep 07 '16 at 08:44
  • 1
  • Using the following web keywords "fourth order moment normal distribution proof", I have obtained at once for example this 2) The technical name for the fourth order moment is "kurtosis".
  • – Jean Marie Sep 07 '16 at 09:07
  • Thank you for all the comments! They helped me a lot in understanding my problem. – foooyoh Sep 19 '16 at 11:07
  • https://math.stackexchange.com/q/92648/321264 – StubbornAtom Jun 19 '20 at 18:08