Let $N=\{1,\dots,n\}$ and $A,B$ be $n\times n$ skew symmetric matrices such that it is possible to permute some rows and some columns from $A$ to get $B$. In other words, for some permutations $g,h: N\rightarrow N$, $$A_{i,j}=B_{g(i),h(j)}$$ for all $1\leq i,j\leq n$. Must there exist a permutation $f:N\rightarrow N$ such that $$A_{i,j}=B_{f(i),f(j)}$$for all $1\leq i,j\leq n?$
For example, let $$A=\begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix} , B=\begin{pmatrix} 0 & -3 \\ 3 & 0 \end{pmatrix} $$ If we switch the rows and also switch the columns, we get from $A$ to $B$. And there exists a permutation $f$ with $f(1)=2,f(2)=1$ such that $A_{i,j}=B_{f(i),f(j)}$ for all $1\leq i,j\leq 2$.
There exists an example with $g\neq h$. Let $$A=\begin{pmatrix} 0 & 0 & 2 & -2 \\ 0 & 0 & -2 & 2 \\ -2 & 2 & 0 & 0 \\ 2 & -2 & 0 & 0 \end{pmatrix} , B=\begin{pmatrix} 0 & 0 & -2 & 2 \\ 0 & 0 & 2 & -2 \\ 2 & -2 & 0 & 0 \\ -2 & 2 & 0 & 0 \end{pmatrix} $$
One possibility for $g,h$ is $g(i)=i$ for all $i$, $h(1)=2,h(2)=1,h(3)=4,h(4)=3$. In this case we can let $f(1)=2,f(2)=1,f(3)=3,f(4)=4$.