I came up with a method for a $n$-ellipse. The 2D case is a particular one and the same method can be applied.
To do it, you need to know the center of the ellipses $\alpha$ and their axis, meaning a transformation matrix $A$.
- Refer to this question if you know the coeffs
$$ax^2 + bxy + cy^2 +dx + ey + f = 0$$
- To compute the matrix $A$ by using major axis $a$, minor axis $b$ and angle $\varphi$:
$$A = \begin{bmatrix}a \cdot \cos \varphi & a \cdot \sin \varphi \\ -b \cdot \sin \varphi & b \cdot \cos \varphi\end{bmatrix}$$
General method
Let $E_1$ and $E_2$ be ellipses of center $\alpha$ and $\beta$ and axis the matrices $\left[A\right]$ and $\left[B\right]$:
$$E_1: \left\{\left(\alpha + A \cdot p\right) \in \mathbb{R}^{n} : \|p\| \le 1\right\}$$
$$E_2: \left\{\left(\beta + B \cdot q\right) \in \mathbb{R}^{n} : \|q\| \le 1\right\}$$
I use the notation $a_i = \left[A\right]_i$, $b_i = \left[B\right]_{i}$, and $\langle u, \ v\rangle = u^{T} \cdot v$ refers to the inner product between $u$ and $v$.
To $P$ be contained inside the ellipse $E_1$, the \eqref{3} must be satisfied
$$\sum_{i=1}^{n} \left(\dfrac{\langle P - \alpha, \ a_i\rangle}{\langle a_i, \ a_i \rangle}\right)^2 \le 1 \tag{3}\label{3}$$
So, to $E_2 \subset E_1$, then \eqref{3} must be satisfied by every point of $E_2$, which leads to \eqref{4}
$$\sum_{i=1}^{n} \left(\dfrac{\left\langle \left(\beta - \alpha + \sum_{j=1}^{n} q_j \cdot b_j\right) , \ a_i\right\rangle}{\langle a_i, \ a_i \rangle}\right)^2 \le 1 \ \ \ \forall \ \|q\| \le 1 \tag{4}\label{4}$$
Expanding \eqref{4} and setting new variables to get \eqref{5}
$$
\sum_{i=1}^{n} \left(C_i + \sum_{j=1}^{n} M_{ij} \cdot q_j \right)^2 \le 1 \ \ \ \ \forall \ \|q\| \le 1 \tag{5}\label{5}
$$
$$C_{i} = \dfrac{\left\langle a_i, \ \beta - \alpha \right\rangle}{\left\langle a_i, \ a_i \right\rangle} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ M_{ij} = \dfrac{\left\langle a_i, \ b_i \right\rangle}{\left\langle a_i, \ a_i \right\rangle}$$
Or also using matrix notation
$$C = \left(A \cdot A^{T} \right)^{-1} \cdot A \cdot \left(\beta - \alpha\right)$$
$$M = \left(A \cdot A^{T} \right)^{-1} \cdot A \cdot B^{T}$$
\eqref{5} can be rewrote as \eqref{6} by using matrix notation
$$\left(C + Mq\right)^{T} \cdot \left(C + Mq\right) \le 1 \ \ \ \ \ \ \ \forall \|q\| \le 1 $$
$$\left\|C+Mq\right\| \le 1 \ \ \ \ \ \ \ \forall \|q\| \le 1 \tag{6}\label{6}$$
From \eqref{6}, we have three useful statements by using triangular inequality:
- If $\|C\| > 1$, then exists at least one $q$ such $\|C + Mq\| > 1$, therefore $E_2 \notin E_1$
- If $\|M\| > 1$, then exists at least one $q$ such $\|C + Mq\| > 1$, therefore $E_2 \notin E_1$
- If $\|C\| + \|M\| \le 1$, therefore $E_2 \in E_1$
With these three cases you can decide for most pair of ellipses.
The underline cases which are not covered for these three verifications still need to be verified. I found some MSE topics:
Bidimensional case
For the 2D case, we can set $q = (\cos \theta, \sin \theta)$ with $\theta \in \left[0, \ 2\pi\right)$ without loss of generality, then the expression becomes
\begin{align*} \|Mq + C\|^2 & = q^T M^T M q + 2C^T M q + C^T C \\ & = m_0 \cos 2\theta + m_1 \sin 2\theta + m_2 \cos \theta + m_3 \sin \theta + m_4\end{align*}
This expression has to be less than 1, so we find the maximum with respect to $\theta$. We derive this expression and find its root
$$-2m_0 \sin 2\theta + 2m_1 \cos 2\theta - m_2 \sin \theta + m_3 \cos \theta = 0$$
Numerical solution
I did not find a direct method to find the underline cases which are not covered for these three verifications.
For the following, my verification are based on finding the maximum of the left side on the \eqref{6} with use of Lagrange multiplier:
$$g(q) = \|q\|^2 - 1 = \langle q, q\rangle - 1$$
Let the minimizing function be
$$J(q, \mu) = \left\|C + Mq\right\|^2 + \mu \left(\|q\|^2 - 1\right)$$
$$\nabla J = 0 \Rightarrow \begin{cases}M^T M q + C^T M + \mu q = 0\\ q^T q - 1 = 0\end{cases}$$
Isolate $\mu$ and apply on the first equation to get \eqref{7}
$$M^T\left(Mq + C\right) - \left\langle Mq, Mq+C\right\rangle \cdot q = 0\tag{7}\label{7}$$
Then a Newton method starting from points like in the axis can be used to verify if the convergence $|Mq + C| \le 1$