This Problem is given in the book
- Problems in Mathematical Analysis - III by Kaczor and Nowak
The solution is as follows:
Set $$F(t)= \biggl(\int\limits_{0}^{t} f(x) \ \text{dx}\biggr)^{2} - \int\limits_{0}^{t} (f(x))^{3} \ \text{dx}, \quad t \in [0,1]$$
Then $$F'(t)=f(t) \cdot \biggl(2 \int\limits_{0}^{t} f(x) \ \text{dx} - (f(t))^{2}\biggr)$$ and if $$G(t)= 2 \int\limits_{0}^{t} f(x) \ \text{dx} - (f(t))^{2}$$, then $G'(t)=2f(t) \cdot (1-f'(t)) \geq 0$. Consequently, $G(t) \geq G(0)=0$, which gives $F'(t) \geq 0$. So, $F(t) \geq 0$,, and in particular $F(1) \geq 0$.
Moreover if$F(1)=0$, then $F(t)=0$ for $t \in [0,1]$ and therfore $F'(t)=f(t)G(t)=0$. This, in turn, implies $G'(t)=2f(t) \cdot (1-f'(t))=0$ and $1-f'(t)=0$ for $t \in (0,1)$.
http://www.science.nus.edu.sg/undergraduates/MA1102R%20APC%20Test%20Sample.pdf
– picakhu Jan 22 '11 at 19:43