According the Rodrigues' Rotation Formula $3D$ rotation matrix $\in$ $SO(3)$ corresponding to a rotation by an angle $\theta$ about a fixed axis specified by the unit vector $\hat{\omega}=(\omega_x,\omega_y,\omega_z) \in R^3$ defined as follows
\begin{bmatrix} \cos \theta +\omega_x^2 \left(1-\cos \theta\right) & \omega_x \omega_y \left(1-\cos \theta\right) - \omega_z \sin \theta & \omega_x \omega_z \left(1-\cos \theta\right) + \omega_y \sin \theta \\ \omega_y \omega_x \left(1-\cos \theta\right) + \omega_z \sin \theta & \cos \theta + \omega_y^2\left(1-\cos \theta\right) & \omega_y \omega_z \left(1-\cos \theta\right) - \omega_x \sin \theta \\ \omega_z \omega_x \left(1-\cos \theta\right) - \omega_y \sin \theta & \omega_z \omega_y \left(1-\cos \theta\right) + \omega_x \sin \theta & \cos \theta + \omega_z^2\left(1-\cos \theta\right) \end{bmatrix}
does there exist $n$-dimensional analogue of this formula?
How to find $n$ dimensional rotation matrix which corresponds rotation of an angle $\theta$ around the $(n-2)$-dimensional subspace?
