Here is a conceptual way to prove Bezout's Identity for the gcd. The set $\rm\,S\,$ of integers of the form $\rm\,a x + b y,\ x,y\in \mathbb Z,\,$ is closed under subtraction so, by the Lemma below, every positive $\rm\,k\in S\,$ is divisible by $\rm\,d = $ least positive $\rm\in S.\,$ So $\rm\,a,b\in S$ $\,\Rightarrow\,$ $\rm d\mid a,b,\,$ i.e. $\rm\,d\,$ is a common divisor of $\rm\,a,b,\,$ necessarily the greatest such by $\rm\ c\mid a,b\,$ $\Rightarrow$ $\rm\,c\mid d = ax+by$ $\Rightarrow$ $\rm\,c\le d$.
Lemma $\ \ $ Let $\,\rm S\ne\emptyset \,$ be a set of integers $>0\,$ closed under subtraction $> 0,\,$ i.e. for all $\rm\,n,m\in S, \,$ $\rm\ n > m\ \Rightarrow\ n-m\, \in\, S.\,$ Then the least $\rm\:\ell\in S\,$ divides every element of $\,\rm S.$
Proof ${\bf\ 1}\,\ $ If not there is a least nonmultiple $\rm\,n\in S,\,$ contra $\rm\,n-\ell \in S\,$ is a nonmultiple of $\rm\,\ell.$
Proof ${\bf\ 2}\,\rm\,\ \ S\,$ closed under subtraction $\rm\,\Rightarrow\,S\,$ closed under remainder (mod), when it is $\ne 0,$ since mod is simply repeated subtraction, i.e. $\rm\ a\ mod\ b\, =\, a - k b\, =\, a\!-\!b\!-\!b\!-\cdots\! -\!b.\,$ Thus $\rm\,n\in S\,$ $\Rightarrow \rm\, (n\ mod\ \ell) = 0,\,$ else it is in $\,\rm S\,$ and smaller than $\rm\,\ell,\,$ contra minimality of $\rm\,\ell.$
Remark $\ $ In a nutshell, two inductions yield
$\rm S\ closed\ under\ {\bf subtraction} $
$\Rightarrow\:\rm S\ closed\ under\ {\bf mod} = remainder = repeated\ subtraction $
$\Rightarrow\:\rm S\ closed\ under\ {\bf gcd} = repeated\ mod\ (Euclid's\ algorithm)$
Viewed constructively this yields the extended Euclidean algorithm for the gcd.
The conceptual structure will be clarified when one studies ideals of rings, where the above proof generalizes to show that Euclidean domains are PIDs.