$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
\color{#f00}{\int\root{x^{2} + 1}x^{8}\,\dd x} & =
{1 \over 9}\int\root{x^{2} + 1}\,\dd\pars{x^{9}} \\ & =
{1 \over 9}\,x^{9}\root{x^{2} + 1} -
{1 \over 9}\int{x^{10} \over \root{x^{2} + 1}}\,\dd x
\end{align}
With the sub$\ldots\quad$
$\ds{t \equiv \root{x^{2} + 1} - x\quad\imp\quad x = {1 - t^{2} \over 2t}}$:
\begin{align}
& \color{#f00}{\int\root{x^{2} + 1}x^{8}\,\dd x} =
{1 \over 9}\,x^{9}\root{x^{2} + 1} -
{1 \over 9216}\int{\pars{1 - t^{2}}^{10} \over t^{11}}\,\dd t
\\[3mm] & =
{1 \over 9}\,x^{9}\root{x^{2} + 1} -
{1 \over 9216}\sum_{n = 0 \atop {\vphantom{\large A}n \not= 5}}^{10}{10 \choose n}\pars{-1}^{n}
\int t^{2n - 11}\,\dd t
+ {7 \over 256}\ln\pars{t}
\\[3mm] & =
{1 \over 9}\,x^{9}\root{x^{2} + 1} -
{1 \over18432}\sum_{n = 0 \atop {\vphantom{\large A}n \not= 5}}^{10}
{10 \choose n}{\pars{-1}^{n} \over n - 5}\,t^{2n - 10} +
{7 \over 256}\ln\pars{t}
\\[3mm] & =
\color{#f00}{{1 \over 9}\,x^{9}\root{x^{2} + 1} -
{1 \over18432}\sum_{n = 0 \atop {\vphantom{\large A}n \not= 5}}^{10}
{10 \choose n}{\pars{-1}^{n} \over n - 5}\,\pars{\root{x^{2} + 1} - x}^{2n - 10}}
\\[3mm] & \color{#f00}{\phantom{==}+
{7 \over 256}\ln\pars{\root{x^{2} + 1} - x}}
\end{align}