If $f$ and $g$ are uniformly continuous functions in $A$ show that $f+g$ is uniformly continuous in $A$.
Proof: because $f$ and $g$ are uniformly continuous on $A$ we can write
$$\forall\varepsilon>0,\exists\delta_1>0,\forall x,y\in A:|x-y|<\delta_1\implies|f(x)-f(y)|<\frac{\varepsilon}2$$ $$\forall\varepsilon>0,\exists\delta_2>0,\forall x,y\in A:|x-y|<\delta_2\implies|g(x)-g(y)|<\frac{\varepsilon}2$$
Then if I call $h(x)=f(x)+g(x)$ we can see that
$$|h(x)-h(y)|\le|f(x)-f(y)|+|g(x)-g(x)|$$
and if I took $\delta_0=\min\{\delta_1,\delta_2\}$ then I can finally write
$$\forall\varepsilon>0,\exists\delta_0>0,\forall x,y\in A:|x-y|<\delta_0\implies|f(x)-f(y)|+|g(x)-g(y)|<\frac{\varepsilon}2+\frac{\varepsilon}2=\varepsilon$$
My question, it is the proof correctly written? Im unsure about the use of "$\frac{\varepsilon}2$" to hold the proof. Thank you in advance.