Assume $f$ is integrable over $[a,b]$ and $\epsilon > 0$. Show that there is a step function $g$ over $[a,b]$ for which $g(x) \leq f(x)$ for all $x \in [a,b]$ and $\displaystyle \int_{a}^b (f(x)-g(x))dx < \epsilon$.
I am having trouble coming up with a step function that satisfies the second condition. Given any $f(x)$, it is easy to come up with a step function such that $g(x) \leq f(x)$ for all $x \in [a,b]$. But how do we deal with the second condition?