Here's a solution that only uses linear algebra and geometry.
If $\pmatrix{X\\ Y}$ is bivariate normal with mean $\pmatrix{0\\0}$ and covariance matrix $\Sigma=\pmatrix{1&\rho\\\rho&1}$, then $\pmatrix{U\\V}=\Sigma^{-1/2} \pmatrix{X\\Y}$ is bivariate normal with mean $\pmatrix{0\\0}$ and covariance matrix $\pmatrix{1&0\\ 0&1}.$
That is, $U$ and $V$ are independent, standard normal random variables.
The illustration below shows that the probability that $\pmatrix{X\\Y}$ lies in the upper quadrant (in blue), is the same as the probability that $\pmatrix{U\\V}$
lies in the wedge (in orange). Since the distribution of $\pmatrix{U\\V}$ is
rotationally invariant, simple geometry gives $\mathbb{P}(X>0,Y>0)={\theta\over 2\pi}.$

With $v=\Sigma^{-1/2}\pmatrix{0\\1}$ and $w=\Sigma^{-1/2}\pmatrix{1\\0},$
we have $\cos(\theta)=\langle v,w\rangle /\|v\| \|w\|.$ But
\begin{eqnarray*}
\langle v,w\rangle &=& (0\ 1)\,\Sigma^{-1}\pmatrix{1\\0}=-\rho/(1-\rho^2)\\[5pt]
\|v\|^2&=&(0\ 1)\,\Sigma^{-1}\pmatrix{0\\1}=1/(1-\rho^2)\\[5pt]
\|w\|^2&=&(1\ 0)\,\Sigma^{-1}\pmatrix{1\\0}=1/(1-\rho^2),
\end{eqnarray*}
so that $\cos(\theta)=-\rho.$ Putting it all together gives
$$\mathbb{P}(X>0,Y>0)={\arccos(-\rho)\over 2\pi}.$$