For $1 \leq p < \infty$, let $\{x_n\}$ be a bounded sequence in $l^p$ and $x$ belong in $l^p$. Show that $\{ x_n \} \rightharpoonup x$ in $l^p$ if and only if it converges componentwise, that is, for each index $k$, $$\lim_{n \to \infty} x_n^k =x^k \text{ where } x_n = ( x_n^1, x_n^2, ...) \text{ and } x= (x^1, x^2...).$$
I try like this: but I think this is true only if $x_n$ converge strongly not weakly. Any solution for this problem?
$"\Rightarrow"$
Let $(x^n)=(x_1^n, x_2^n,..., x_j^n...) \rightharpoonup x=(x_1, x_2,..., x_j,..)$ a bounded sequence in $l^p$
\begin{align*} \Rightarrow & ||x^n - x||_p < \epsilon\\ & \sum\limits_{j=1}^{\infty} |x_j^n - x_j|^p < \epsilon \end{align*}
Fix $j :$ $$ |x_j^n - x_j|^p < \sum\limits_{j=1}^{\infty} |x_j^n - x_j|^p < \epsilon$$ $$\Rightarrow |x_j^n - x_j|^p <\epsilon$$ $$\Rightarrow \lim\limits_{n \to \infty} x_j^n = x_j \ \forall j$$
$"\Leftarrow"$ need help