0

$$\int\frac{2x^3}{x^2+1} \, dx$$

$$u=x^2$$

$$du=2x \, dx$$

$$\int \frac{u}{u+1} \, du$$$$=\int \frac{u+1-1}{u+1}du$$$$=\int 1-\frac{1}{u+1} \, du$$

how should I continue? is there an algotherm for integrating rational functions?

gbox
  • 13,645

3 Answers3

3

So far you have $\int 1 du - \int \frac{du}{u + 1}$.

Make the substitution $v = u + 1 \implies dv = du$ You get:

$u + c - \int \frac{dv}{v} = u - \ln\mid v \mid +\text{ } C$

Re substitute and you're done.

2

Notice, here is another simple method, $$\int \frac{2x^3}{x^2+1}\ dx$$ $$\int \frac{2x^3+2x-2x}{x^2+1}\ dx$$ $$=\int \frac{2x(x^2+1)-2x}{x^2+1}\ dx$$ $$=\int 2x\ dx-\int \frac{2x}{x^2+1}\ dx$$ $$=2\int x\ dx-\int \frac{d(x^2+1)}{x^2+1}$$ $$=\color{red}{x^2-\ln(x^2+1)+C}$$

0

No need of sub :

Just put $$2x^3=2x(1+x^2)-2x$$

Angelo Mark
  • 6,226