$$\int\frac{2x^3}{x^2+1} \, dx$$
$$u=x^2$$
$$du=2x \, dx$$
$$\int \frac{u}{u+1} \, du$$$$=\int \frac{u+1-1}{u+1}du$$$$=\int 1-\frac{1}{u+1} \, du$$
how should I continue? is there an algotherm for integrating rational functions?
$$\int\frac{2x^3}{x^2+1} \, dx$$
$$u=x^2$$
$$du=2x \, dx$$
$$\int \frac{u}{u+1} \, du$$$$=\int \frac{u+1-1}{u+1}du$$$$=\int 1-\frac{1}{u+1} \, du$$
how should I continue? is there an algotherm for integrating rational functions?
So far you have $\int 1 du - \int \frac{du}{u + 1}$.
Make the substitution $v = u + 1 \implies dv = du$ You get:
$u + c - \int \frac{dv}{v} = u - \ln\mid v \mid +\text{ } C$
Re substitute and you're done.
Notice, here is another simple method, $$\int \frac{2x^3}{x^2+1}\ dx$$ $$\int \frac{2x^3+2x-2x}{x^2+1}\ dx$$ $$=\int \frac{2x(x^2+1)-2x}{x^2+1}\ dx$$ $$=\int 2x\ dx-\int \frac{2x}{x^2+1}\ dx$$ $$=2\int x\ dx-\int \frac{d(x^2+1)}{x^2+1}$$ $$=\color{red}{x^2-\ln(x^2+1)+C}$$