I will divide the Case to these $3$:
$$
\textbf{Case 1. }\bf{(b-1)^2-4ac>0.} \\
\textbf{Case 2. }\bf{(b-1)^2-4ac=0.} \\
\textbf{Case 3. }\bf{(b-1)^2-4ac<0.}
$$
This is my solution:
\begin{align}
& \textbf{Case 1. } \bf{(b-1)^2-4ac > 0:} \\
\ \\
&\text{Let's think about $t_2$ which satisfies } f^2(t_2)=t_2. \\
\Rightarrow \ t_2 = \ & a{t_2}^2+bt_2+c. \Rightarrow a{t_2}^2+(b-1)t_2+c=0. \\
\ \\
\therefore \ t_2 = \ & \frac{-b+1\pm\sqrt{b^2-2b+1+4ac}}{2a}. \\
\Rightarrow \ & \text{I will let $t_2$=$\alpha_1$ and $\beta_1$.}
\ \\
&\text{Now, let's think about $t_4$ which satisfies $f^4(t_4)=t_4$.} \\
\Rightarrow \ t_4 \ & = a(a{t_4}^2+bt_4+c)^2+b(a{t_4}^2+bt_4+c)+c \\
&=a^3{t_4}^4 + 2a^2b{t_4}^3+(2a^2c+ab^2+ab){t_4}^2+(2abc+b^2){t_4}+bc+c. \\
\therefore \ t_4 \ & \text{has $4$ solutions, including $t_2$.} \\
\ \\
&\text{I will let $t_4=\alpha_1, \beta_1, \alpha_2, \beta_2$.} \\
\ \\
\Rightarrow &\text{I'll define $\alpha_1$chain, $\beta_1$chain, $\alpha_2$chain and $\beta_2$chain:} \\
\ \\
\alpha_1\text{chain}: & \begin{bmatrix} \alpha_1 & \rightarrow & f(\alpha_1) \\ \uparrow &
\fbox{$2_\text{cyc}$} & \downarrow \\ f(\alpha_1) &\leftarrow & \alpha_1 \end{bmatrix} \\
\ \\
\beta_1\text{chain}: & \begin{bmatrix} \beta_1 & \rightarrow & f(\beta_1) \\ \uparrow &
\fbox{$2_\text{cyc}$} & \downarrow \\ f(\beta_1) &\leftarrow & \beta_1 \end{bmatrix} \\
\ \\
\alpha_2\text{chain}: & \begin{bmatrix} \alpha_2 & \rightarrow & f(\alpha_2) \\ \uparrow &
\fbox{$4_\text{cyc}$} & \downarrow \\ f^3(\alpha_2) &\leftarrow & f^2(\alpha_2) \end{bmatrix} \\
\ \\
\beta_2\text{chain}: & \begin{bmatrix} \beta_2 & \rightarrow & f(\beta_2) \\ \uparrow &
\fbox{$4_\text{cyc}$} & \downarrow \\ f^3(\beta_2) &\leftarrow & f^2(\beta_2) \end{bmatrix} \\
\ \\
&\text{I will let set } T_4=\{t_4\}=\{\alpha_1, \beta_1, \alpha_2, \beta_2\}. \\
\Rightarrow \ &f^n(\alpha_1), f^n(\alpha_2), f^n(\beta_1), f^n(\beta_2) \in T_4. \\
\ \\
&\text{Looking at $\alpha_2$ and $\beta_2$, you can easily show the contradiction.} \\
&\text{(just try to assume the value of $f(\alpha_2)$, for example.)} \\
\ \\
\therefore & \not\exists f: \mathbb{R} \to \mathbb{R} \text{ s.t. } f(f(x))=ax^2+bx+c, (b-1)^2-4ac>0.
\end{align}
For Case 2, you can just think about 3 variables with $t_2$ and $t_4$.($n(T_4)=3, \ \exists! \ t_2.$)
For Case 3, there is a solution for few $f$.
I will let you think about Case 2. I can't answer about Case $3$, because this answer just wanted to show that $f$ satisfying the OP doesn't exist, totally.
$$\begin{align} f(f(x))&=ax^2+bx+c\ f(f(-x))&=ax^2-bx+c\ f(f(x))-f(f(-x))&=2bx+2c\ f(f(0))-f(f(0))&=2c\ c&=0 \end{align}$$
– Simply Beautiful Art Jun 03 '17 at 14:26