Let $H$ a hilbert space with an orthonormal basis $(e_n)_{n\in \mathbb{N}}$ and $F$ a linear operator, such that $\langle e_k,F e_n\rangle =:\phi(n,k)$. Find a good estimate for $\lVert F\lVert$ in terms of $\phi(n,k)$. Apply your estimate to the special case of $\phi(n,k)=\frac{1}{n+k}$.
I tried applying parsevals identity and hölder's inequality: \begin{align} \lVert F x\lVert^2&=\lVert \sum_{n=1}^{\infty}\langle x,e_n\rangle F e_n\lVert^2=\lVert\sum_{n=1}^{\infty}\langle x,e_n\rangle \sum_{k=1}^{\infty}\langle e_k,F e_n\rangle e_k \lVert^2 \\&=\sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} \langle x,e_n\rangle \phi(n,k)\right)^2 \leq \sum_{k=1}^{\infty} \left [\left(\sum_{n=1}^{\infty} \langle x,e_n\rangle ^2\right)\left(\sum_{n=1}^{\infty}\phi(n,k)^2\right)\right]\\&= \lVert x\lVert^2 \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \phi(n,k)^2 \end{align}
Which implies $\lVert F\lVert \le \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \phi(n,k)^2$. But applied to $\phi(n,k)=\frac{1}{n+k}$ this sum doesn't converge at all.
$$F(x_1, x_2, \ldots)=\begin{bmatrix} 1/2 & 1/3 & 1/4 & \ldots \ 1/3 & 1/4 & 1/5 &\ldots \ 1/4 & 1/5& 1/6 & \ldots \ \ldots & \ldots & \ldots & \ldots \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \ \vdots \end{bmatrix}$$
is well-defined, unbounded, and satisfies $\phi(n, k)=1/(n+k)$. Well-definitess looks like the hardest part, and I suspect that Hardy's discrete inequality http://en.wikipedia.org/wiki/Hardy%27s_inequality plays a role in proving it.
– Giuseppe Negro Jun 16 '12 at 11:06