Mark Kac wrote a paper about asymptotics of determinants whose main diagonal is taken from a function $f$, with $-1$ on the super and sub-diagonals. Specifically, $$ D_n = \begin{vmatrix} f(1/n) & -1 & 0 & \cdots & &0 \\ -1 & f(2/n) & -1 & \cdots \\ 0& -1 & f(3/n) \\ &&& \ddots \\ &&&& f((n-1)/n) & -1 \\ &&&& -1 & f(1) \end{vmatrix} $$ He then writes, "We begin with the elementary formula $$\frac{1}{\sqrt{D_n}} = \frac{1}{(\sqrt{\pi})^n} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp\left[-\sum_{k=1}^n -\frac{1}{2}f\left(\frac{k}{n}\right) x_k^2 + 2\sum_{k=1}^{n-1} x_kx_{k+1}\right]dx_1dx_2\cdots dx_n $$
My question is, Where does this elementary formula come from??
The paper is: Asymptotic behavior of a class of determinants, L'Enseignement Mathematique, pp 177-183, 15(1969)