ADMM Consensus Trick and Orthogonal Projection onto an Intersection of Convex Sets
The ADMM Consensus Optimization
Given a problem in the form:
$$\begin{aligned}
\arg \min_{ \boldsymbol{x} } \quad & \sum_{i}^{n} {f}_{i} \left( \boldsymbol{x} \right) \\
\end{aligned}$$
By invoking auxiliary variables one could rewrite it as:
$$\begin{aligned}
\arg \min_{ \boldsymbol{x} } \quad & \sum_{i}^{n} {f}_{i} \left( \boldsymbol{x}_{i} \right) \\
\text{subject to} \quad & \boldsymbol{x}_{i} = \boldsymbol{z}, \; i = 1, 2, \ldots, n \\
\end{aligned}$$
Namely, it is a separable form with equality constraint on each variable.
In matrix form it can be written as:
$$\begin{aligned}
\arg \min_{ \boldsymbol{x} } \quad & \sum_{i}^{n} {f}_{i} \left( \boldsymbol{x}_{i} \right) \\
\text{subject to} \quad & \boldsymbol{u} := \begin{bmatrix} \boldsymbol{x}_{1} \\ \boldsymbol{x}_{2} \\ \vdots \\ \boldsymbol{x}_{n} \end{bmatrix} = \begin{bmatrix} I \\ I \\ \vdots \\ I \end{bmatrix} \boldsymbol{z}
\end{aligned}$$
By defining $ {E}_{i} $ to be the matrix such that $ \boldsymbol{x}_{i} = {E}_{i} \boldsymbol{u} $, namely the selector of the appropriate sub vector form $ \boldsymbol{u} $ we can write the problem in the ADMM form (The Scaled ADMM form):
$$\begin{aligned}
\boldsymbol{u}^{k + 1} & = \arg \min_{ \boldsymbol{u} } \sum_{i}^{n} {f}_{i} \left( {E}_{i} \boldsymbol{u} \right) + \frac{\rho}{2} {\left\| {E}_{i} \boldsymbol{u} - \boldsymbol{z}^{k} + \boldsymbol{\lambda}^{k} \right\|}_{2}^{2} \\
\boldsymbol{z}^{k + 1} & = \arg \min_{ \boldsymbol{z} } \frac{\rho}{2} {\left\| \boldsymbol{u}^{k + 1} - \begin{bmatrix} I \\ I \\ \vdots \\ I \end{bmatrix} \boldsymbol{z} + \boldsymbol{\lambda}^{k} \right\|}_{2}^{2} \\
\boldsymbol{\lambda}^{k + 1} & = \boldsymbol{\lambda}^{k} + \boldsymbol{u}^{k + 1} - \begin{bmatrix} I \\ I \\ \vdots \\ I \end{bmatrix} \boldsymbol{z}^{k + 1} \\
\end{aligned}$$
Since the form is block separable it can be written in an element form:
$$\begin{aligned}
\boldsymbol{x}_{i}^{k + 1} & = \arg \min_{ \boldsymbol{x}_{i} } {f}_{i} \left( \boldsymbol{x}_{i} \right) + \frac{\rho}{2} {\left\| \boldsymbol{x}_{i} - \boldsymbol{z}^{k} + \boldsymbol{\lambda}_{i}^{k} \right\|}_{2}^{2}, & i = 1, 2, \ldots, n \\
\boldsymbol{z}^{k + 1} & = \arg \min_{ \boldsymbol{z} } \frac{\rho}{2} \sum_{i = 1}^{n} {\left\| \boldsymbol{x}_{i}^{k + 1} - \boldsymbol{z} + \boldsymbol{\lambda}_{i}^{k} \right\|}_{2}^{2} \\
\boldsymbol{\lambda}_{i}^{k + 1} & = \boldsymbol{\lambda}_{i}^{k} + \boldsymbol{x}_{i}^{k + 1} - \boldsymbol{z}^{k + 1}, & i = 1, 2, \ldots, n \\
\end{aligned}$$
Remark: Pay attention that $ \boldsymbol{z}_{k + 1} = \frac{1}{n} \sum_{i = 1}^{n} \boldsymbol{x}_{i}^{k + 1} + \boldsymbol{\lambda}_{i}^{k} $. Namely the mean value of the set $ { \left\{ \boldsymbol{x}_{i}^{k + 1} + \boldsymbol{\lambda}_{i}^{k} \right\} }_{i = 1}^{n} $.
The Proximal Operator is given by $ \operatorname{Prox}_{\lambda f \left( \cdot \right)} \left( \boldsymbol{y} \right) = \arg \min_{\boldsymbol{x}} \frac{1}{2} {\left\| \boldsymbol{x} - \boldsymbol{y} \right\|}_{2}^{2} + \lambda f \left( \boldsymbol{x} \right) $ and simplifying the optimization for $ \boldsymbol{z}_{k + 1} $ one can write the above as:
$$\begin{aligned}
\boldsymbol{x}_{i}^{k + 1} & = \operatorname{Prox}_{\frac{1}{\rho} {f}_{i} \left( \cdot \right)} \left( \boldsymbol{z}^{k} - \boldsymbol{\lambda}_{i}^{k} \right), & i = 1, 2, \ldots, n \\
\boldsymbol{z}^{k + 1} & = \frac{1}{n} \sum_{i = 1}^{n} \boldsymbol{x}_{i}^{k + 1} + \boldsymbol{\lambda}_{i}^{k} \\
\boldsymbol{\lambda}_{i}^{k + 1} & = \boldsymbol{\lambda}_{i}^{k} + \boldsymbol{x}_{i}^{k + 1} - \boldsymbol{z}^{k + 1}, & i = 1, 2, \ldots, n \\
\end{aligned}$$
Orthogonal Projection onto an Intersection of Convex Sets
The problem is given by:
$$\begin{aligned}
\arg \min_{ \boldsymbol{x} } \quad & \frac{1}{2} {\left\| \boldsymbol{x} - \boldsymbol{y} \right\|}_{2}^{2} \\
\text{subject to} \quad & \boldsymbol{x} \in \bigcap_i \mathcal{C}_{i}, \; i = 1, 2, \ldots n \\
\end{aligned}$$
Namely we're looking for orthogonal projection of $ \boldsymbol{y} $ onto the intersection of the sets $ {\left\{ \mathcal{C}_{i} \right\}}_{i = 1}^{n} $.
The problem could be rewritten as:
$$\begin{aligned}
\arg \min_{ \boldsymbol{x} } \quad & \frac{1}{2} {\left\| \boldsymbol{x} - \boldsymbol{y} \right\|}_{2}^{2} + \sum_{i}^{n} {\delta}_{\mathcal{C}_{i}} \left( \boldsymbol{x} \right)
\end{aligned}$$
Where $ {\delta}_{\mathcal{C}_{i}} (x) = \begin{cases} 0 & x \in \mathcal{C}_{i} \\ \infty & x \notin \mathcal{C}_{i}
\end{cases} $.
So we can use the ADMM Consensus Optimization by setting $ {f}_{1} \left( \boldsymbol{x} \right) = \frac{1}{2} {\left\| \boldsymbol{x} - \boldsymbol{y} \right\|}_{2}^{2} $ and $ {f}_{i} \left( \boldsymbol{x} \right) = {\delta}_{\mathcal{C}_{i - 1}} \left( \boldsymbol{x} \right), \; i = 2, 3, \ldots, n + 1 $.
In order to solve it we need the Proximal Operator of each function. For $ {f}_{1} \left( \cdot \right) $ it is given by:
$$ \operatorname{Prox}_{ \frac{1}{\rho} {f}_{1} \left( \cdot \right)} \left( \boldsymbol{v} \right) = \arg \min_{ \boldsymbol{x} } \frac{1}{2} {\left\| \boldsymbol{x} - \boldsymbol{y} \right\|}_{2}^{2} + \frac{\rho}{2} {\left\| \boldsymbol{x} - \boldsymbol{v} \right\|}_{2}^{2} = \frac{\rho \boldsymbol{v} + \boldsymbol{y}}{1 + \rho} $$
For the rest the Proximal Operator is the orthogonal projection:
$$ \operatorname{Prox}_{ \frac{1}{\rho} {f}_{i} \left( \cdot \right)} \left( \boldsymbol{v} \right) = \operatorname{Proj}_{ \mathcal{C}_{i - 1} } \left( \boldsymbol{v} \right), \; i = 2, 3, \ldots, n + 1 $$