This is very easy using the universal property of the floor function, viz.
$$\qquad \rm n\le \lfloor r \rfloor \iff n\le r,\ \ \ for\ \ \ n\in \mathbb Z,\ r\in \mathbb R$$
Thus for $\rm\:0 < c\in \mathbb Z,\ r\in \mathbb R,\ $ (e.g. $\rm\:r = a/b\in\mathbb Q\:$ in your case)
$$\rm\begin{eqnarray}
&\rm n &\le&\:\rm\ \color{#c00}{\lfloor \lfloor r \rfloor / c\rfloor} \\
\iff\ & \rm n &\le&\ \ \rm \lfloor r \rfloor / c \\
\iff\ & \rm cn &\le&\ \ \rm \lfloor r \rfloor \\
\iff\ & \rm cn &\le&\ \ \rm r \\
\iff\ & \rm n &\le&\ \ \rm r/c \\
\iff\ & \rm n &\le&\ \ \rm \color{#0a0}{\lfloor r/c \rfloor} \\[0.5em]
\Longrightarrow\ \ \rm \color{#c00}{\lfloor \lfloor r\rm \rfloor}&\color{#c00}{/ c\rfloor\ }&=&\rm\ \ \color{#0a0}{\lfloor r/c\rfloor}
\end{eqnarray}$$
since both are $\:\!\le\:\!$ each other (by choosing $\,\rm n\,$ equal to each above).
For $\rm\:r = a/b\:$ we get your special case $\rm\ \lfloor \lfloor a/b \rfloor / c\rfloor = \lfloor a/(bc)\rfloor. $
Remark $ $ If you know a little category theory you can view this universal property of floor as a right adjoint to inclusion, e.g. see Arturo's answer here, or see any textbook on category theory. Or, equivalently, it can be viewed as a Galois connection. But, of course, one need not know any category theory to understand the above proof. Indeed, I've had success explaining this (and similar universal-inspired proofs) to bright high-school students.