Let $I\subseteq\mathbb{R}$ be an non-degenerate interval and let $f$: $I\longrightarrow\mathbb{R}$ be a function with the property that for every pair $(x_0, y_0)\in I\times\mathbb{R}$ there exists a unique $F$: $I\longrightarrow\mathbb{R}$ with $F'=f$ and $F(x_0)=y_0$.
Must $f$ be continuous?