Given a Borel space $\Omega$.
Consider a complex measure: $$\mu:\mathcal{B}(\Omega)\to\mathbb{C}$$
Regard a sequence: $$\eta_n\in\mathcal{L}(\Omega):\quad\eta_n\to\eta$$
Suppose one finds: $$\overline{\eta}\in\mathcal{L}(\mu):\quad|\eta_n|\leq|\overline{\eta}|$$
Then it follows: $$\int\eta\,\mathrm{d}\mu=\lim_n\int\eta_n\mathrm{d}\mu$$
How can I check this?
Reference
This is a lemma for Pushforward (SM)