5

For any real number $x\in\mathbb R$, when does the following limit converge? $$ \lim_{n\to\infty}\sin(2\pi xn!) $$ For $\frac{p}{q}=x\in\mathbb Q$ it converges to $0$ beacuse for any sufficiently large $n:xn!\in\mathbb N$ and then we get $\sin$ of a whole multiply of $2\pi$. (actually you can take $\pi$, not $2\pi$.)
My question is, are there any $x\in\mathbb{R-Q}$ such that the limit converges?
What about $x\in\mathbb C$?

maxuel
  • 515

2 Answers2

1

My friend found a particle answer, it converges for $e$. for $x\in[0,1]$: $$ e^x=\sum_{i=0}^n\frac{x^i}{i!}+\frac{C^{n+1}}{(n+1)!},C\in[0,1]\\ e=\sum_{i=0}^n\frac{1}{i!}+\frac{C^{n+1}}{(n+1)!}\\ e-\sum_{i=0}^n\frac{1}{i!}=\frac{C^{n+1}}{(n+1)!}\\ 2\pi n!e-\sum_{i=0}^n\frac{2\pi n!}{i!}=\frac{C^{n+1}}{(n+1)!}\overset{n\to\infty}{\to}0 $$ Now $\frac{2\pi n!}{i!}\in\mathbb{N}$ and $\sin$ uniformly converges so $\forall\epsilon>0\exists\delta>0:|x-y|<\delta\Rightarrow|\sin(x)-\sin(y)<|\epsilon$. The limit above converges so $\forall\delta\exists n:|2\pi n!e-\sum_{i=0}^n\frac{2\pi n!}{i!}|<\delta$ and then $|f(2\pi n!e)-f(\sum_{i=0}^n\frac{2\pi n!}{i!})|<\epsilon$. But $f(\sum_{i=0}^n\frac{2\pi n!}{i!})=0$ so $|f(2\pi n!e)|<\epsilon$

maxuel
  • 515
  • I think you want to say $\frac{n!}{i!}\in\mathbb{N}$ – Anon Jan 31 '17 at 04:12
  • In the last displayed equation, there is a $2\pi n!$ missing in the numerator of the RHS. 2. You don't need uniform continuity of $\sin$, just continuity at zero. 3. I don't see why you can assume that $C$ is independent of $n$. In fact I'm pretty sure it does depend on $n$.
  • – Najib Idrissi Apr 03 '18 at 14:51