Unnormalized Laplacian serve in the approximation of the minimization of RatioCut, while normalized Laplacian serve in the approximation of the minimization of NCut.
Basically, in the unnormalized case, you optimize an objective relative to the number of nodes in each cluster.
And, in the normalized case, you optimize the objective relative to the volume of each cluster.
The square root comes from this: $f^\top(D - A)f = g^\top(I-D^{-1/2}AD^{-1/2})g$ where $g=D^{1/2}f$.
So, if your optimization method relies on a symmetric PSD matrix, you use the symmetric normalized Laplacian, and then remove the bias by computing $D^{-1/2}g$ to recover $f$.
More insight about RatioCut and NCut.
Let $G=(V,E)$ be a graph with vertex set $V=\{v_1,\dots,v_n\}$ and edge set $E$, $w_{ij}$ denote the positive weight on the edge between $v_i$ and $v_j$. Let $\{C_i:1 \le i \le k\}$ be a disjoint partition of $V$. Define
$$
Cut(C_i:1\le i\le k)\triangleq\frac{1}{2}\sum_{c=1}^k \sum_{i \in C_c,j\in \bar C_c}A_{ij}
$$
$$
RatioCut(A_i:1\le i \le k)\triangleq\sum_{i=1}^k\frac{Cut(A_i,\bar A_i)}{|A_i|}
$$
$$
NCut(A_i:1\le i \le k)\triangleq\sum_{i=1}^k\frac{Cut(A_i,\bar A_i)}{vol(A_i)}
$$
RatioCut:
Let
$$\tag{1}\label{1}
f_i=\begin{cases}\sqrt{|\bar A|/|A|} & \text{if } v_i\in A\\\sqrt{|A|/|\bar A|} & \text{if } v_i \in \bar A\end{cases}
$$
\begin{align*}
f^\top L f & = \frac{1}{2}\sum_{i,j=1}^n w_{ij}(f_i-f_j)^2 \\
& = \frac{1}{2}\sum_{i\in A,j\in \bar A}w_{ij}\left(\sqrt{\frac{|\bar A|}{|A|}}+\sqrt{\frac{|A|}{|\bar A|}}\right) + \frac{1}{2}\sum_{i\in \bar A,j\in A}w_{ij}\left(-\sqrt{\frac{|\bar A|}{|A|}}-\sqrt{\frac{|A|}{|\bar A|}}\right) \\
&=Cut(A,\bar A)\left(\frac{|\bar A|}{|A|}+\frac{|A|}{|\bar A|}+2\right)\\
&=Cut(A,\bar A)\left(\frac{|A|+|\bar A|}{|A|}+\frac{|A|+|\bar A|}{|\bar A|}\right)\\
&=|V| RatioCut(A,\bar A)
\end{align*}
You can also see that $\sum_{i=1}^n f_i=0$, so $f\perp \mathbb 1$.
So minimizing RatioCut is equivalent to the following problem:
$$
\min_{A\subset V}f^\top L f\text{ subject to $f\perp\mathbb 1$, $f_i$ as defined in Eq.\eqref{1}},\|f\|^2=n
$$
NCut:
For this case, define
$$\tag{2}\label{2}
f_i=\begin{cases}
\sqrt{\frac{vol(\bar A)}{vol(A)}} &\text{if $v_i\in A$}\\
\sqrt{\frac{-vol(A)}{vol(\bar A)}} &\text{if $v_i\in \bar A$}\\
\end{cases}
$$
Similar to above, we have $Df\perp \mathbb 1$, $f^\top D f=vol(V)$ and $f^\top L f=vol(V)NCut(A,\bar A)$.
Minimizing NCut is equivalent to
$$
\min_{A\subset V} f^\top L f \text{ subject to $f$ as in Eq.\eqref{2}, $Df\perp \mathbb 1$ and $f^\top Df=vol(V)$}
$$
Substituting $g=D^{1/2}f$ we get
$$
\min_{A\subset V} g^\top D^{-1/2}LD^{-1/2} g \text{ subject to $g=D^{1/2}f$, $f$ as in Eq.\eqref{2}, $g\perp D^{1/2}\mathbb 1$ and $\|g\|^2=vol(V)$}
$$
Then observe that $D^{-1/2}LD^{-1/2}$ is the symmetric normalized Laplacian.
AAdjacent matrix. 2.Ddiagonal matrix, $d_{ii}$ represents the degree of node $i$. 3.LLaplacian where $L = D - W$. And we calculate the eigenvector ofL. And we choice $m$ eigenvector where one eigenvector represents as one axis, which means $m$ eigenvector equals to the new coordination of the data point, for example,has aEthe eigenvector matrix, row represent data $i$, col represents eigenvector. Then, we use k-means clustering data on the new coordination. There is no specific definition of eigenvalues. – John Buger Jan 21 '15 at 13:41Llaplacian matrix is be used as a data reduction tool in spectral clustering. – John Buger Jan 21 '15 at 13:47