1

$$2\sin \frac{\pi}{16}= \sqrt{2-\sqrt{2+\sqrt{2}}}$$

What law is need to be applied here? Do I have to make the $\frac{\pi}{16}$ in a form that will be give us $\sqrt{2}$ like sin 45 degree?

2 Answers2

4

Since, $\sin{\dfrac{\theta}{2}}=\sqrt{\dfrac{1-\cos\theta}{2}}$ and $\cos{\dfrac{\theta} {2}}=\sqrt{\dfrac{1+\cos\theta}{2}}$

$\sin{\dfrac{\theta}{4}}=\sqrt{\dfrac{1-\cos{\dfrac{\theta}{2}}}{2}}$

$\sin{\dfrac{\theta}{4}}=\sqrt{\dfrac{1-\sqrt{\dfrac{1+\cos{\theta}}{2}}}{2}}$

Putting, $\theta=\dfrac{\pi}{4}$

$\sin{\dfrac{\pi}{16}}=\sqrt{\dfrac{1-\sqrt{\dfrac{1+\dfrac{1}{\sqrt2}}{2}}}{2}}=\dfrac{\sqrt{2-\sqrt{2+\sqrt{2}}}}{2}$

Now, multiply both sides by $2$ to get the required equation.

$2\sin \dfrac{\pi}{16}= \sqrt{2-\sqrt{2+\sqrt{2}}}$

Dheeraj Kumar
  • 2,111
  • 17
  • 27
3

Call $x = \sin \frac{\pi}{16} \to 1-2x^2 = \cos \frac{\pi}{8} \to \left(1-2x^2\right)^2 = \cos^2 \frac{\pi}{8} = \dfrac{1+\cos \frac{\pi}{4}}{2} = \dfrac{2+\sqrt{2}}{4} \to 1-2x^2 = \dfrac{\sqrt{2+\sqrt{2}}}{2} \to x^2 = \dfrac{2-\sqrt{2+\sqrt{2}}}{4} \to 2x = \sqrt{2-\sqrt{2+\sqrt{2}}}$.

DeepSea
  • 78,689