Let $C^{n \times n}$ be a square matrix.
Prove that $$C=\frac{1}{2}(C+C^T)+\frac{1}{2}(C-C^T)$$
What I have manage so far is:
a. Let $S$ be a Symmetric Matrix so $S=C+C^T$
b. Let $N$ be a Skew-Symmetric Matrix so $N=C-C^T$
Proof:
$S^t=[C+C^T]^T=C^T+C=S$
$N^t=[C-C^T]^T=-C^T+C=-N$