Let T be a normal operator. Prove that $\|T\|^{2n}=\|TT^*\|^n$
Has it got something to do with $\|T\|=\|T^*\|$?
Let T be a normal operator. Prove that $\|T\|^{2n}=\|TT^*\|^n$
Has it got something to do with $\|T\|=\|T^*\|$?
Actually, you don't need $T$ to be normal. Your equality holds for any $T$.
Note first that $\|T\|^2=\|T^*T\|$: this follows from $$ \langle \|Tx\|^2=\langle Tx,Tx\rangle=\langle T^*Tx,x\rangle\leq\|T^*T\|\,\|x\|^2, $$ so $\|T\|^2\leq\|T^*T\|\leq\|T^*\|\,\|T\|$. We immediately get $\|T\|\leq\|T^*\|$. As this reasoning applies also to $T^*$, we get $\|T\|=\|T^*\|$ and $\|T\|^2=\|T^*T\|$. In particular $$ \|T\|^2=\|T^*\|^2=\|(T^*)^*T^*\|=\|TT^*\|. $$ Taking $n^{\rm th}$ powers, we get $$ \|T\|^{2n}=\|TT^*\|^n,\ \ \ n\in\mathbb N. $$
Hint: For a normal operator use the fact that
$$\|T^{*}T\|=\|T^2\|.$$
(Since $\langle T^*Tx,x\rangle=\|Tx\|^2=\langle TT^*x,x\rangle$).
Then use induction.