Evaluation of $\displaystyle \int_{0}^{1}\frac{x\ln (x)}{\sqrt{1-x^2}}dx$
$\bf{My\; Try::}$ Let $\displaystyle I = \int_{0}^{1}\frac{x\ln x}{\sqrt{1-x^2}}dx\;,$ Put $x=\cos \phi\;,$ Then $dx = -\sin \phi d\phi$
and Changing Limit, We get
$$\displaystyle I = -\int_{\frac{\pi}{2}}^{0}\cos \phi \cdot \ln(\cos \phi )d\phi = \int_{0}^{\frac{\pi}{2}} \ln(\cos \phi)\cdot \cos \phi d\phi$$
Now Using Integration by parts, We get
$$\displaystyle I = \left[\ln(\cos \phi)\cdot \sin \phi\right]_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}}\frac{\sin^2 \phi}{\cos \phi}d\phi$$
So $$\displaystyle I = \left[\ln(\cos \phi)\cdot \sin \phi\right]_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}}\frac{(1-\cos^2 \phi)}{\cos \phi}d\phi$$
So $$\displaystyle I = \left[\ln(\cos \phi)\cdot \sin \phi\right]_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}}\sec \phi d\phi-\int_{0}^{\frac{\pi}{2}}\cos \phi d\phi$$
So $$\displaystyle I = \left[\ln(\cos \phi)\cdot \sin \phi\right]_{0}^{\frac{\pi}{2}}+\left[\ln\left|\sec \phi+\tan \phi\right|\right]_{0}^{\frac{\pi}{2}}-\left[\sin \phi\right]_{0}^{\frac{\pi}{2}}$$
So $$\displaystyle I = \left[\ln(\cos \phi)\cdot \sin \phi\right]_{0}^{\frac{\pi}{2}}+\left[\ln\left|\sec \phi+\tan \phi\right|\right]_{0}^{\frac{\pi}{2}}-1$$
Now How can I solve after that, Help Required, Thanks