
As Jean Marie noted, this geometric series relationship between $r_a, \; r$ and $r_c$ only exists for triangles standing on a unique chord of the circle, i.e. that chord upon which the congruent inscribed circles results. Refer to the diagram on the left above.
Determining the properties of the general case, we can easily deduce from the big circle geometry:
$$ r_a = \dfrac{R}{2} (1 - \cos{A}) = R \sin^2{\dfrac{A}{2}}$$
$$ r_b = \dfrac{R}{2} (1 - \cos{B}) = R \sin^2{\dfrac{B}{2}}$$
$$ r_c = \dfrac{R}{2} (1 - \cos{C}) = R \sin^2{\dfrac{C}{2}}$$
where $R$ is the outer circle's radius.
And $\;\;\; a = 2R\;\sin{A} \;\;\;\; b = 2R\; \sin{B} \;\;\;\; c = 2R \;\sin{C}$
Looking at the inscribed circle of radius $r$, we can write:
$ \;\;a = r \cot{\dfrac{B}{2}} + r \cot{\dfrac{C}{2}} $
$$ \implies r = \frac{2R\sin{A}}{\cot{\dfrac{B}{2}} + \cot{\dfrac{C}{2}} } $$
$$ $$
The congruent situation first.
Clearly for $r_a = r_c = r\;$ we must have $ \;a = c \;$ and thus $ \; A = C$.
Thus $\; B = 180^{\text{o}} - 2A \;\;$ or $\;\; \dfrac{B}{2} = 90^{\text{o}} - A $.
$$ r_a = r \;\; \implies \;\; R \sin^2{\dfrac{A}{2}} = \frac{2R\sin{A}}{\cot{\dfrac{B}{2}} +\cot{\dfrac{C}{2}}} = \frac{4R\sin{\dfrac{A}{2}} \cos{\dfrac{A}{2}}}{\tan{A} +\cot{\dfrac{A}{2}}} $$
$$ \implies \tan{\dfrac{A}{2}} = \frac{4}{\tan{A} + \cot{\dfrac{A}{2}} } $$
$$ \implies \tan{\dfrac{A}{2}} \; (\frac{2 \tan{\dfrac{A}{2}}}{1 - \tan^2{\dfrac{A}{2}}}) + 1 = 4 $$
$$ \implies 2\; \tan^2{\dfrac{A}{2}} = 3 - 3 \; \tan^2{\dfrac{A}{2}} \; \implies \tan{\dfrac{A}{2}} = \sqrt{\dfrac{3}{5}} $$
$$ \implies \tan{A} = \dfrac {2\; \sqrt{\dfrac{3}{5}} } { (1 - \dfrac{3}{5}) } = \sqrt{15} \;\; \implies \; \cos{A} = \dfrac{1}{4} = 75.5225 ^{\text{o}} $$
Hence since $\sin{\dfrac{A}{2}} = \sqrt{\dfrac{3}{8}} \;\;$ we have $\;\; r_a = r_c = r = R \; \sin^2{\dfrac{A}{2}} = \dfrac{3R}{8} $
The general situation when $b$ is fixed at its congruent length.
Keeping $b$ fixed is effectively keeping angle $B$ fixed at its congruent value of $B = 180^{\text{o}} - 2 \cos^{-1}{\dfrac{1}{4}} = 28.955^{\text{o}} $. This means that changes to angles $A$ and $C$ come at the expense of each other, i.e.
$ A + C = 2A_o \;\; \implies \;\; \dfrac{C}{2} = A_o - \dfrac{A}{2} \;\; $ where $\;\; A_o = \cos^{-1}{\dfrac{1}{4}} $
$$ r = \dfrac {2R \sin{A}} { \cot{\dfrac{B}{2}} + \cot{\dfrac{C}{2}} } = \dfrac { 4R \sin{\dfrac{A}{2}} \cos{\dfrac{A}{2}} } { \sqrt{15} + \cot{(A_o - \dfrac{A}{2}}) } = \dfrac { 4R \sin{\dfrac{A}{2}} \cos{\dfrac{A}{2}} } { \sqrt{15} + \dfrac{ 1 + \sqrt{15} \tan{\dfrac{A}{2}} } { \sqrt{15} - \tan{\dfrac{A}{2}} } } $$
$$ \require{cancel} = 4R \sin{\dfrac{A}{2}} \cos{\dfrac{A}{2}} \; (\dfrac { \sqrt{15} - \tan{\dfrac{A}{2}} } { 15 - \cancel {\sqrt{15} \tan{\dfrac{A}{2}} } + 1 + \cancel {\sqrt{15} \tan{\dfrac{A}{2}} } } ) $$
$$ \implies \; r = \dfrac { 4R \sin{\dfrac{A}{2}} \cos{\dfrac{A}{2}} (\sqrt{15} - \tan{\dfrac{A}{2}} ) } {16} = \dfrac{R}{4} \sin{\dfrac{A}{2}} \cos{\dfrac{A}{2}} (\sqrt{15} - \tan{\dfrac{A}{2}} ) $$
$$ \boldsymbol{ \require{cancel} \dfrac{r_a}{r} } = \dfrac{ \cancel{R} \sin^\cancel{2}{\dfrac{A}{2}} } { \dfrac{\cancel{R}}{4} \cancel{\sin{\dfrac{A}{2}} } \cos{\dfrac{A}{2}} (\sqrt{15} - \tan{\dfrac{A}{2}} ) } = \boldsymbol{ \dfrac{4 \tan{\dfrac{A}{2}}} {\sqrt{15} - \tan{\dfrac{A}{2}}} } $$
$$ $$
$$ r_c = R\;\sin^2{\dfrac{C}{2}} = R\;(\sin{A_o} \cos{\dfrac{A}{2}} - \cos{A_o} \sin{\dfrac{A}{2}})^2 $$
Recalling that $\;\; \sin{A_o} = \dfrac{\sqrt{15}}{4} $ and $ \cos{A_o} = \dfrac{1}{4} $ we have:
$$ r_c = R\;\cos^2{\dfrac{A}{2}} (\dfrac{\sqrt{15}}{4} - \dfrac{1}{4}\;\tan{\dfrac{A}{2}})^2 = \dfrac{R}{16}\; \cos^2{\dfrac{A}{2}}\;(\sqrt{15} - \tan{\dfrac{A}{2}})^2 $$
$$ \require{cancel} \boldsymbol{\dfrac{r}{r_c}} = \dfrac{\dfrac{\cancel{R}}{4} \sin{\dfrac{A}{2}} \cancel{\cos{\dfrac{A}{2}} } \cancel{(\sqrt{15} - \tan{\dfrac{A}{2}})}} {\dfrac{\cancel{R}}{16}\; \cos^\cancel{2}{\dfrac{A}{2}}\;(\sqrt{15} - \tan{\dfrac{A}{2}})^\cancel{2}} = \boldsymbol{ \dfrac{4 \tan{\dfrac{A}{2}}} {\sqrt{15} - \tan{\dfrac{A}{2}}} } $$
So we have:
$$ \boldsymbol{ r_a:r \; = \; r:r_c \; = \; \dfrac{ 4 \tan{\dfrac{A}{2}} } {\sqrt{15} - \tan{\dfrac{A}{2}} } } $$
which corresponds to a geometric sequence $a, ar, ar^2, \dots \; $ if we have them in the ascending order $ r_c, r, r_a$.
The sequence ratio of
$$\; \dfrac{ 4 \tan{\dfrac{A}{2}} } { \sqrt{15} - \tan{\dfrac{A}{2}} }\;$$
collapses to unity (though still mathematically a geometric sequence with ratio $1$ !) at the congruent situation where $A = C = A_o $ and it rises to $\; +\infty \;$ as $A \; \rightarrow 2A_o = 151.045^\text{o} \;$ and then increases from $ -\infty $ after this.
I know that this is far from the elegant solution sought by Dan. I have a feeling that I am missing a geometrical perspective that might simplify things. I am also curious about the neglected small circle of radius $r_b$. But we must solve a problem elaborately before we find the elegant solution . . .