Consider the opposite probability.
$$Rr\le \frac{a^2}{2}$$
$$\implies\frac{abc}{4\Delta}\frac{2\Delta}{a+b+c}\le \frac{a^2}{2}$$
$$\implies bc\le a(a+b+c)$$
$$\implies \frac{a}{b}\cdot\frac{a}{c}+\frac{a}{c}+\frac{a}{b}\ge 1$$
Using argument similar to this answer, let
$$a=2\sin\alpha,b=2\sin(\alpha+\beta),c=2\sin\beta$$
With
$$\alpha,\beta>0;\alpha+\beta<\pi$$
And consider
$$s=\frac{c}{a}=\frac{\sin\beta}{\sin\alpha},t=\frac{b}{a}=\frac{\sin(\alpha+\beta)}{\sin\alpha}$$
The mapping $(\alpha,\beta)\mapsto(s,t)$ is bijective onto the set of pairs $(s,t)\in\mathbb{R}^2$ satisfying
$$s,t>0;s+t>1>|s-t|$$
And the Jacobian determinant of the mapping is $st$, the condition $\min(a,b,c)=a$ has Lebesgue measure $\pi^2/6$
Using the change of variable $(\alpha,\beta)\mapsto(s,t)$, we get
$$P\left(Rr\le \frac{a^2}{2}\mid \min(a,b,c)=a\right)=\frac{6}{\pi^2}\int_{\Omega}\frac{\mathrm ds\,\mathrm dt}{st}$$
With
$$\Omega=\left\{(s,t)\in\mathbb{R}^2:s,t\ge 1;\frac{1}{st}+\frac{1}{s}+\frac{1}{t}\ge 1\right\}$$
Consider the condition
$$\frac{1}{st}+\frac{1}{s}+\frac{1}{t}\ge 1$$
$$\implies \frac{1}{t}\left(\frac{1}{s}+1\right)\ge 1-\frac{1}{s}$$
$$\implies t\le \frac{1+1/s}{1-1/s}=\frac{s+1}{s-1}$$
However since we have $1>|s-t|$ then $s+1>t>s-1$, and:
$$\Omega=\left\{(s,t)\in\mathbb{R}^2:1\le s<2;1\le t<s+1\right\}\\\cup\left\{(s,t)\in\mathbb{R}^2:2\le s<3;s-1<t\le \frac{s+1}{s-1}\right\}$$
Apply Fubini's theorem:
$$\frac{6}{\pi^2}\int_{\Omega}\frac{\mathrm ds\,\mathrm dt}{st}=\frac{6}{\pi^2}\left(\int_{1}^{2}\int_{1}^{s+1}\frac{\mathrm dt}{t}\,\frac{\mathrm ds}{s}+\int_{2}^{3}\int_{s-1}^{(s+1)/(s-1)}\frac{\mathrm dt}{t}\,\frac{\mathrm ds}{s}\right)$$
$$=\frac{6}{\pi^2}\left(\int_{1}^{2}\frac{\ln(s+1)}{s}\,\mathrm ds+\int_{2}^{3}\frac{\ln(s+1)-2\ln(s-1)}{s}\,\mathrm ds\right)$$
$$=\frac{6}{\pi^2}\left(\int_{1}^{3}\frac{\ln(s+1)}{s}\,\mathrm ds-2\int_{2}^{3}\frac{\ln(s-1)}{s}\,\mathrm ds\right)$$
$$=\frac{6}{\pi^2}\left(\int_{2}^{4}\frac{\ln s}{s-1}\,\mathrm ds-2\int_{1}^{2}\frac{\ln s}{s+1}\,\mathrm ds\right)$$
We have:
$$\int\frac{\ln x}{x-1}\,\mathrm dx=-\operatorname{Li}_2(1-x)+C$$
$$\int\frac{\ln x}{x+1}\,\mathrm dx=\operatorname{Li}_2(-x)+\ln x\ln(x+1)+C$$
$$\implies P\left(Rr\le \frac{a^2}{2}\mid \min(a,b,c)=a\right)$$
$$=\frac{6}{\pi^2}\left(-\operatorname{Li}_2(-3)+\operatorname{Li}_2(-1)-2\operatorname{Li}_2(-2)+2\operatorname{Li}_2(-1)-2\ln 2\ln 3\right)$$
$$=\frac{6}{\pi^2}\left(-\operatorname{Li}_2(-3)-2\operatorname{Li}_2(-2)+3\operatorname{Li}_2(-1)-2\ln 2\ln 3\right)$$
To prove this evaluates to $1/2$, first we apply the identity:
$$\operatorname{Li}_2(z)+\operatorname{Li}_2\left(\frac{1}{z}\right)=-\frac{\pi^2}{6}-\frac{\ln^2(-z)}{2}$$
$$\implies \operatorname{Li}_2(-3)+\operatorname{Li}_2\left(-\frac{1}{3}\right)=-\frac{\pi^2}{6}-\frac{\ln^2 3}{2},$$
$$\operatorname{Li}_2(-2)+\operatorname{Li}_2\left(-\frac{1}{2}\right)=-\frac{\pi^2}{6}-\frac{\ln^2 2}{2}$$
And the following identities by Ramanujan:
$$\operatorname{Li}_2\left(-\frac{1}{3}\right)-\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{\pi^2}{18}+\frac{\ln^2 3}{6},$$
$$\operatorname{Li}_2\left(-\frac{1}{2}\right)+\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{\pi^2}{18}+\ln 2\ln 3-\frac{\ln^2 2}{2}-\frac{\ln^2 3}{3}$$
$$\implies \operatorname{Li}_2\left(-\frac{1}{3}\right)+2\operatorname{Li}_2\left(-\frac{1}{2}\right)=-\frac{\pi^2}{6}+2\ln 2\ln 3-\ln^2 2-\frac{\ln^2 3}{2}$$
$$\implies \operatorname{Li}_2(-3)+2\operatorname{Li}_2(-2)=-\frac{\pi^2}{2}-\ln^2 2-\frac{\ln^2 3}{2}+\frac{\pi^2}{6}-2\ln 2\ln 3+\ln^2 2+\frac{\ln^2 3}{2}$$
$$=-\frac{\pi^2}{3}-2\ln 2\ln 3$$
$$\implies -\operatorname{Li}_2(-3)-2\operatorname{Li}_2(-2)+3\operatorname{Li}_2(-1)-2\ln 2\ln 3=\frac{\pi^2}{3}-\frac{\pi^2}{4}=\frac{\pi^2}{12}$$
$$\implies P\left(Rr\le \frac{a^2}{2}\mid \min(a,b,c)=a\right)=\frac{6}{\pi^2}\cdot\frac{\pi^2}{12}=\frac{1}{2}$$
Thus
$$\boxed{P\left(Rr>\frac{a^2}{2}\mid \min(a,b,c)=a\right)=\frac{1}{2}}$$