In this question I asked about a closed form for a very simple-looking integral.
$$\int _0^1\int _0^1 \frac{\sqrt{x^2+y^2}}{1-xy} dxdy$$
This problem was boiled down to evaluating the following two series involving the Harmonic Numbers \begin{eqnarray}S_1 &=& \sum_{k=0}^{\infty}(-1)^k \frac{\binom{2k}{k}}{4^k}\frac{H_{2k}}{2k-1}\\ S_2 &=& \sum_{k=0}^{\infty} (-1)^k \frac{\binom{2k}{k}}{4^k}\frac{H_{2k}}{4k-1} = -0.179653 \cdots \end{eqnarray}
The first sum turned out to be
$$S_1 = \frac12 \bigl( 2 - 2\sqrt{2} + \sqrt{2} \log \left( 48-32\sqrt{2} \right) + \log \left( 3-2\sqrt{2} \right) \bigr)$$
But finding a polylogarithmic closed form for $S_2$ proved difficult. Using a generating function technique, I managed to express $S_2$ as
$$S_2 = -\frac12 \int_1 ^{\sqrt{2}} \frac{1}{(1-y^2)^{5/4}} \log \left( \frac{1+y}{2y^2} \right) \mathrm{d}y$$
After tinkering around with this in Wolfram Mathematica, it seems like the expression for $S_2$ is quite involved:
$$ S_2 = \left(\frac{1}{2}+\frac{i}{2}\right)\frac{\pi^{3/2}\Bigl(-8-\pi+\ln16\Bigr)} {\Gamma\Bigl(\frac{1}{4}\Bigr)^2}\, -\operatorname{arcsinh}(1) + 2^{3/4}(1-\sqrt{2})^{1/4} \Biggl[ \Bigl(-2+\operatorname{arcsinh}(1)\Bigr) \, {}_2F_{1}\!\Bigl(-\frac{1}{4},\frac{1}{4};\frac{3}{4};\frac{1}{2}+\frac{1}{\sqrt{2}}\Bigr) + 4\, {}_3F_{2}\!\Bigl(-\frac{1}{4},-\frac{1}{4},\frac{1}{4};\frac{3}{4},\frac{3}{4};\frac{1}{2}+\frac{1}{\sqrt{2}}\Bigr) \Biggr] - (1+i)\, {}_3F_{2}\!\Bigl(\frac{1}{2},\frac{1}{2},\frac{5}{4};\frac{3}{2},\frac{3}{2};2\Bigr) + \sqrt{2}\,\ln2 + \left(\frac{1}{2}+\frac{i}{2}\right) \Biggl[ -5\, {}_2F_{1}\!\Bigl(-\frac{3}{4},\frac{1}{2};\frac{3}{2};2\Bigr) + {}_2F_{1}\!\Bigl(\frac{1}{4},\frac{1}{2};\frac{3}{2};2\Bigr) \Biggr]\ln2 $$
My question is, how would one prove and simplify something like this?
Addendum. As Efim Mazhnik showed below, the answer seems to involve two hypergeometric functions. I suppose I will ask two separate questions to see if they could be simplified further:
This one will be for $\mathcal{H}_1$:
$$ \mathcal{H}_1 = {}_3F_2 \left(-\frac14,-\frac14,\frac14;\,\frac34,\frac34;\,\frac12\right) $$
This one will be for $\mathcal{H}_2$:
$$ \mathcal{H}_2 = {}_3F_2 \left(\frac14,\frac12,\frac12;\,\frac32,\frac32;2(\sqrt{2}-1)\right) $$
S2MMA calculate very fast:NIntegrate[( 3 Sqrt[2 \[Pi]] + 4 Gamma[3/4] Gamma[7/4] - 6 Sqrt[\[Pi]] Hypergeometric2F1[-(1/4), 1/2, 3/4, -t^2])/( 6 Sqrt[\[Pi]] (-1 + t)), {t, 0, 1}, WorkingPrecision -> 100]. – Mariusz Iwaniuk Feb 22 '25 at 14:30