For any quadrilateral $XYZW$ whose diagonals $XZ,YW$ intersect at a point $D$, the sine law tells us that: $$\frac{\sin\angle DXW}{|DW|}\,\,\frac{\sin\angle DWZ}{|DZ|}\,\,\frac{\sin\angle DZY}{|DY|}\,\,\frac{\sin\angle DYX}{|DX|}\\=\frac{\sin\angle DWX}{|DX|}\,\,\frac{\sin\angle DZW}{|DW|}\,\,\frac{\sin\angle DYZ}{|DZ|}\,\,\frac{\sin\angle DXY}{|DY|} $$
$${}$$
$\qquad\qquad\qquad\qquad$ 
Clearing denominators we get:
$$\sin\angle DXW\,\,\sin\angle DWZ\,\,\sin\angle DZY\,\,\sin\angle DYX\\=\sin\angle DWX\,\,\sin\angle DZW\,\,\sin\angle DYZ\,\,\sin\angle DXY \qquad (1)$$
In particular, for the quadrilateral $ABQP$, we have both $\bigtriangleup APB$ and $\bigtriangleup APQ$ isosceles, so $\angle ABP=\angle APB$ and $\angle PAQ =\angle PQA$.
$${}$$
$\qquad\qquad\qquad\qquad$ 
Thus $(1)$ simplifies to:
$$\sin \angle BAQ \,\,\sin \angle QBP \,\,=\,\,\sin \angle BPQ \,\,\sin \angle AQB\qquad (2)$$
Denote our desired angle $\angle ACB=4\theta$. Then standard properties of the angles of isosceles triangles tell us that:
$$ \angle BAQ= 90^\circ -4\theta,\,\, \angle QBP=45^\circ-3\theta ,\,\, \angle BPQ=135^\circ-5\theta ,\,\,\angle AQB=6\theta.$$
Thus we may rewrite $(2)$:
$$\sin (90^\circ -4\theta) \,\,\sin (45^\circ-3\theta) \,\,=\,\,\sin (135^\circ-5\theta) \,\,\sin (6\theta)\qquad (3)$$
which simplifies to:$$\cos (4\theta) \,\,\sin (45^\circ-3\theta) \,\,=\,\,\cos (5\theta-45^\circ) \,\,\sin (6\theta)\qquad (4)$$
Using the trigonometric identity: $$2\sin A\cos B =\sin(A+B)+\sin(A-B)$$
we get from $(4)$: $$\sin(45^\circ+\theta)+\sin(45^\circ-7\theta)=\sin(11\theta-45^\circ)+\sin(\theta+45^\circ)$$
Finally, cancelling the common term we have:$$\sin(45^\circ-7\theta)=\sin(11\theta-45^\circ).$$
There are two possibilities:
- $45^\circ-7\theta=180^\circ-(11\theta-45^\circ)+360^\circ k$, for $k$ an integer.
In this case $\angle ACB=4\theta=180^\circ (2k+1)$, which cannot be the angle of a triangle. This just leaves:
- $45^\circ-7\theta=11\theta-45^\circ+360^\circ k$, for $k$ an integer.
In this case $18\theta=90^\circ-360^\circ k$, so $\angle ACB=4\theta=20^\circ-80^\circ k$.
The only possible values for $\angle ACB$ that can occur in a triangle are therefore $20^\circ$ or $100^\circ$. However the latter is obtuse, meaning $AB$ is longer than $AC$, so the desired construction is not possible.
We conclude $\angle ACB=20^\circ$.