I have been looking for the generalized version of the below integral,
$$I(n)=\int_0^1 \frac{\log(1-x)\log^n(1+x)}{1+x} \, dx$$
So far I have derived the results only for $n=1$,
$$I(1)=\int_0^1 \frac{\log(1-x)\log(1+x)}{1+x} \, dx = \frac{1}{3}\log^3(2)-\frac{\pi^2}{12}\log(2)+\frac{\zeta(3)}{8}$$
Now trying for $n=2,3,4$ using all variations of identities led to integrals which do not seem to have any nice closed forms
I am aware of a similar generalization performed here
$$ \int_0^1 \frac{\log^n (1-x) \log^{n-1} (1+x)}{1+x} dx=\frac{1}{2} \left(\sum _{m=1}^n \sum _{k=1}^m +\sum _{m=n+1}^{2 n-1} \sum _{k=m-n+1}^n\right) \frac{\binom{n}{k}\binom{n-1}{m-k} \log ^{-m+2 n-1}(2) }{-k+m+1}\left(k \underset{a\to 0}{\text{lim}}\underset{b\to 1}{\text{lim}}\frac{\partial ^{m}B(a,b)}{\partial a^{k-1}\, \partial b^{-k+m+1}}+(-1)^m \log ^{m+1}(2)\right)+\frac{\log ^{2 n}(2)}{n}$$
Is there any alternate method to compute for $n>1$, and build a generalization ?