I have to prove: $$ \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n $$ L.H.S. $$ \frac{n!}{0!(n-0)!} + \frac{n!}{1!(n-1)!} + \frac{n!}{2!(n-2)!} + \cdots + \frac{n!}{n!(n-n)!} $$
$$= 1 + \frac{n!}{(n-1)!} + \frac{n!}{2!(n-2)!} + \cdots + 1 $$
$$= \sum_{k=0}^n \frac{n!}{k!(n-k)!} $$
$$= \sum_{k=0}^n \binom{n}{k} $$
The binomial theorem given in my book is: $$ (a + b)^{m+1} = \sum_{k=0}^{m+1} \binom{m+1}{k} a^{m+1-k} b^k $$
Let m+1=n, a=b=1, as we can raise 1 to the power of anything, $$= \sum_{k=0}^{m+1} \binom{m+1}{k} a^{m+1-k} b^k $$
$$= (1 + 1)^n = 2^n $$
This seems to work until I have to prove
$$ 1\binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \cdots + n\binom{n}{n} = n2^{n-1}$$ L.H.S.
$$= (\sum_{k=1}^n \binom{n}{k})k $$
Let m+1=n, a=b=1,j+1=k. $$=( \sum_{j=0}^{m+1} \binom{m+1}{j} a^{m+1-j} b^j)k $$ $$= ((1 + 1)^n)k = k2^n $$
Which is clearly wrong. But I don't know why. You can raise 1 to the power of anything, and only the variables are changed, else is fixed.
Praying I don't get question banned, I know my doubts are stupid as hell, sorry.