$$I=\int_0^{\frac{\pi}{3}}\left(\ln\left(\frac{2\tan x}{\tan x +\sqrt{3}}\right)\right)^2dx$$
using $f(x) = f(a-x)$
$$I=\int_0^{\frac{\pi}{3}}\left(\ln\left(\frac{2\tan \left(\frac{\pi}{3}-x\right)}{\tan \left(\frac{\pi}{3}-x\right) +\sqrt{3}}\right)\right)^2 dx$$
using $\tan \left(\frac{\pi}{3}-x\right) = \frac{\tan\left(\frac{\pi}{3}\right)-\tan\left(x\right)}{1+\tan\left(\frac{\pi}{3}\right)\tan\left(x\right)}$
using $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$
$$I=\int_0^{\frac{\pi}{3}}\left(\ln\left(\frac{\sqrt3-\tan x}{\sqrt3+\tan x}\right)\right)^2 dx$$
Substituting $\tan (x) = \sqrt3 t$;
$$I=\sqrt3 \int_0^1 \ln \left(\frac{1-t}{1+t}\right)^2\frac{1}{1+3t^2} dt$$
Using this substitution $\frac{1-t}{1+t} = x$ as our bounds are $0$ and $1$;
$$I=\frac{\sqrt3}{2}\int_0^1 \frac{\ln^2(x)}{x^2-x+1} dx$$
I hit a deadend here and I am not able to find anything on this integral that can solve this.
Edit :
Trying @Vaskara_GRek_O comment,
$$I=\frac{\sqrt3}{2}\int_0^1 \frac{\ln^2(x)}{x^2-x+1} \,dx$$
$$u= 1-x\to -\,du=\,dx \implies [0,1]\to[1,0]$$
$$I=\frac{\sqrt3}{2}\int_0^1 \frac{\ln^2(1-u)}{u^2-u+1} \,du$$
$$\ln^2(1-u)=2\sum_{n=1}^\infty \frac{H_n}{n+1}u^n$$
$$I=\sqrt3 \int_0^1 \frac{1}{u^2-u+1} \sum_{n=1}^\infty \frac{H_n}{n+1}u^n \,du$$
$$I=\sqrt3 \sum_{n=1}^\infty \frac{H_n}{n+1} \int_0^1 \frac{u^n}{u^2-u+1} \,du$$
$$\int_0^1 \frac{u^n}{u^2-u+1} \,du=\frac{1}{n+1}\;_3F_2\left(1,1,1+n;1+\frac{n}{2},\frac{3+n}{2},\frac{1}{4}\right)$$
$$I=\sqrt3 \sum_{n=1}^\infty \frac{H_n}{(n+1)^2} \;_3F_2\left(1,1,1+n;1+\frac{n}{2},\frac{3+n}{2},\frac{1}{4}\right)$$
How does one even compute this scary sum?
Taken from here