This is a note on high-precision computation of the limit $$a_\infty=\lim\limits_{n\to\infty}a_n\approx1.45523641194065421249837906730024813\cdots$$
First, let $a_n=a_\infty+b_n$. Then $n^2(b_n-b_{n-1})=a_\infty+b_{n-2}$, hence
$$
a_\infty=\lim_{n\to\infty}n^2(b_n-b_{n-1})=-\lim_{n\to\infty}\frac{b_n-b_{n-1}}{\frac1n-\frac1{n-1}},
$$
and the Stolz–Cesàro theorem yields $\lim\limits_{n\to\infty}nb_n=-a_\infty$. This alone already gives a considerable speedup: $a_n^{(1)}=\frac{na_n}{n-1}$ converges to $a_\infty$ much faster than $a_n$ itself (see the table below).
But this process can be continued. The result is the asymptotic expansion
$$
a_n\asymp a_\infty\sum_{k=0}^{(\infty)}c_k n^{-k}\qquad(n\to\infty)
$$
with the coefficients $c_k$ given by $c_0=1$, $c_1=-1$, $c_2=1$ and, for $k>1$,
$$
c_{k+1}=-\frac1{k+1}\sum_{j=1}^k\left[\binom{k+1}{j-1}+2^{k-j}\binom{k-1}{j-1}\right]c_j.
$$
So, the sequence $(c_k)$ begins with
$$
1,-1,1,-\frac13,-\frac16,-\frac16,-\frac19,\frac{19}{63},\frac{227}{168},\frac{13499}{4536},\frac{16183}{4536},-\frac{220859}{49896},-\frac{14209739}{299376},\dots\newcommand{\ntail}[1]{\color{\LightBlue}{#1\cdots}}
$$
Now we can compute $a_n^{(m)}=a_n/\sum_{k=0}^m c_k n^{-k}$ instead of $a_n$:
| $n$ |
$a_n$ |
$a_n^{(1)}$ |
$a_n^{(2)}$ |
$a_n^{(20)}$ |
| $10^2$ |
$1.4\ntail{408290}$ |
$1.455\ntail{38291306447}$ |
$1.45523\ntail{5919537251482034}$ |
$38$ digits |
| $10^3$ |
$1.45\ntail{37826}$ |
$1.45523\ntail{786814795}$ |
$1.455236411\ntail{454847305315}$ |
$58$ digits |
| $10^4$ |
$1.455\ntail{0909}$ |
$1.4552364\ntail{2649398}$ |
$1.455236411940\ntail{169060927}$ |
$79$ digits |
| $10^5$ |
$1.4552\ntail{218}$ |
$1.45523641\ntail{208617}$ |
$1.45523641194065\ntail{3727412}$ |
$99$ digits |
| $10^6$ |
$1.45523\ntail{49}$ |
$1.45523641194\ntail{210}$ |
$1.455236411940654212\ntail{013}$ |
$121$ digits |
| $10^7$ |
$1.455236\ntail{2}$ |
$1.4552364119406\ntail{6}$ |
$1.45523641194065421249\ntail{7}$ |
$142$ digits |
Another approach uses generating functions.
Let $g(z):=\sum_{n=1}^\infty a_n z^n$ for $|z|<1$; then we have $a_\infty=\lim\limits_{z\to1^-}(1-z)g(z)$.
Let $w(z):=(1-z)g(z)=\sum_{n=1}^\infty c_n z^n$ where $c_1=1$ and $c_n=a_n-a_{n-1}$ for $n>1$. The given recurrence for $a_n$ is now rewritten as $(n+1)^2 c_{n+1}=\sum_{k=1}^{n-1}c_k$, which holds for $n>0$ (under the agreement that the sum of zero terms is zero). Multiply by $z^n$ and sum over all $n>0$; since
$$
\sum_{n=1}^\infty(n+1)^2 c_{n+1}z^n=\frac{d}{dz}\left(z\frac{d}{dz}\sum_{n=1}^\infty c_{n+1}z^{n+1}\right)=\big(zw'(z)\big)'-1,
$$
$$
\sum_{n=1}^\infty z^n\sum_{k=1}^{n-1}c_k=\sum_{k=1}^\infty c_k\sum_{n=k+1}^\infty z^n=\sum_{k=1}^\infty\frac{c_k z^{k+1}}{1-z}=\frac{zw(z)}{1-z},
$$
we obtain $\color{blue}{z(1-z)w''(z)+(1-z)w'(z)-zw(z)=1-z}$, and seek for $a_\infty=w(1^-)$.
This can be solved using modern numerical methods for ODEs (sinc-collocation with double-exponential transformations), which has a chance to outperform the preceding approach.