I need help to integrate
$$\int \sqrt{1+\sqrt{1+x}}\mathrm{d}x$$
I am trying to evaluate this integral by substituting $x=\tan^{2}(\theta)$. Therefore, $\mathrm{d}x=2\tan(\theta)\sec(\theta)^{2}\mathrm{d}\theta$. So, the integral will become $$2\int \sqrt{1+\sec(\theta)}\tan(\theta)\sec(\theta)^2\mathrm{d}\theta$$ Now after this step, I wrote $\sec(\theta):=\frac{1}{\cos(\theta)}$. So, the above integral will be
$$2\int \sqrt{\frac{1+\cos(\theta)}{\cos(\theta)}}\tan(\theta)\sec(\theta)^2\mathrm{d}\theta$$
Now we know that $1+\cos(\theta)=2\cos\left(\frac{\theta}{2}\right)^{2}$. Now the integral will become
$$2\sqrt{2}\int \frac{\cos\left(\frac{\theta}{2}\right)}{\sqrt{\cos(\theta)}}\frac{\sin(\theta)}{\cos(\theta)^3}\mathrm{d}\theta$$ So, we can write the above integral as $$2\sqrt{2}\int \frac{\sin(\theta) \cdot \cos\left(\frac{\theta}{2}\right)}{\cos(\theta)^{\frac{7}{2}}}\mathrm{d}\theta$$ But after this step, I can't understand how to approach further. Please help me out.