Let $m,M>0$ be such that $m\le c_k\le M$ for all $k$. If $|z|<1$, then $|c_kz^k|\le M|z|^k\to 0$. Then we have $$\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n c_k z^k=0$$
But I cannot show for $|z|=1$. If $c_k=c$ is a constant sequence. Then $\frac{1}{n}\sum\limits_{k=1}^n c_k z^k=c\frac{z(z^n-1)}{n(z-1)}\to0$ as $z\ne1$ and $|z|=1$.
Can anyone help with any idea or hint for the problem? Thanks for your help in advance.