I am trying to approximate the following $$ c_{n,k}=\frac{n!}{(n-k)!n^k} $$ with $n \gg 2k$, however, my approximated value differs from the one provided by Mathematica for some arbitrary values I have picked. I tried some ideas, but they do not seem to work. First,
$$c_{n,k}=\frac{n!}{(n-k)!n^k}={n \choose k}\cdot\frac{k!}{n^k},$$ also $$\left(\frac{n}{k}\right)^k\leq {n \choose k} \leq \left(\frac{n e}{k}\right)^k \Leftrightarrow \left(\frac{n}{k}\right)^k\frac{k!}{n^k}\leq c_{n,k} \leq \left(\frac{n e}{k}\right)^k\frac{k!}{n^k}$$ so
$$\frac{k!}{k^k}\leq c_{n,k} \leq e^k\frac{k!}{k^k}$$ and taking logs $$\log\left(\frac{k!}{k^k}\right)\leq \log c_{n,k} \leq \log\left(e^k\frac{k!}{k^k}\right)=k\log e +\log\left(\frac{k!}{k^k}\right)$$
but, via Stirling ($k$ is not "big" so not a very good estimate), $$ \log\left(\frac{k!}{k^k}\right)=\log(k!)-\log(k^k)\sim k\log(k)-k\log(k)=0 $$
which leads nowhere. Even applying Stirling directly from the start and then using some manipulations, does not lead me anywhere.
$$ n!\sim \sqrt{2\pi n} n^n e^{-n}\qquad \text{and}\qquad (n-k)!\sim \sqrt{2\pi (n-k)} (n-k)^{n-k} e^{-n}e^{k} $$ and plugging in
$$c_{n,k}\sim\frac{\sqrt{2\pi n} n^n e^{-n}}{\sqrt{2\pi (n-k)} (n-k)^{n-k} e^{-n}e^{k}n^k}=\sqrt{\frac{n}{n-k}}\left(\frac{n}{n-k}\right)^{n-k}e^{-k}$$
but, $n \gg k$,so $$\left(\frac{n}{n-k}\right)^{n}\to e^k\qquad \text{as}\qquad n\to\infty$$ yielding
$$c_{n,k}\sim \left(\frac{n}{n-k}\right)^{\frac{1}{2}-k}.$$
However, considering $n=2\cdot 10^6$ and $k=10^3$, I obtain $0.778963$ from Mathematica and $0.606606$ from the latter method. Interestingly, using the approximation $$ \left(\frac{n}{n-k}\right)^{\frac{1}{2}(1-k)}. $$ gets much closer to a value of $0.778947$.
$$\sqrt{\frac{n}{n-k}}\left(\frac{n}{n-k}\right)^{n-k}e^{-k} =\left(\frac{n}{n-k}\right)^{\frac12-\frac{k}2} \left(\frac{n}{n-k}\right)^{n-\frac{k}2}e^{-k}$$
and using
$$\left(\frac{n}{n-k}\right)^{n-\frac{k}{2}}\sim e^k$$
but this is achieved a posteriori and does not give insight into why I should specifically keep $k/2$.
– kiyomi Apr 28 '23 at 21:22