Let $(x^1,\dots, x^n,x^{n+1})$ denote the standard cartesian coordinates in $\Bbb{R}^{n+1}$, restricted to $S^n$, and let $(\xi^1,\dots, \xi^n)$ denote the coordinates for stereographic projection from the north pole. These are related as
\begin{align}
(x^1,\dots, x^n,x^{n+1})&=
\left(\frac{2\xi^1}{1+\|\xi\|^2},\dots, \frac{2\xi^n}{1+\|\xi\|^2},1-\frac{2}{1+\|\xi\|^2}\right).
\end{align}
We thus have
\begin{align}
\begin{cases}
dx^i&=\frac{2d\xi^i}{1+\|\xi\|^2}-\frac{4\xi^i\langle \xi,d\xi\rangle}{(1+\|\xi\|^2)^2}&\text{for $i\in\{1,\dots, n\}$}\\\\
dx^{n+1}&=\frac{4\langle \xi,d\xi\rangle}{(1+\|\xi\|^2)^2},
\end{cases}
\end{align}
where $\langle \xi,d\xi\rangle:=\sum_{j=1}^n\xi^j\,d\xi^j$. So, plugging this into the Riemannian metric on the sphere, we get
\begin{align}
g_{S^n}&:=\sum_{i=1}^{n}(dx^i)^2+ (dx^{n+1})^2\\
&=\frac{4}{(1+\|\xi\|^2)^2}\sum_{i=1}^n(d\xi^i)^2\\
&-\frac{16}{(1+\|\xi\|^2)^3}\langle \xi,d\xi\rangle^2+
\frac{16\|\xi\|^2}{(1+\|\xi\|^2)^4}\langle \xi,d\xi\rangle^2+
\frac{16}{(1+\|\xi\|^2)^4}\langle \xi,d\xi\rangle^2\\\\
&=\frac{4}{(1+\|\xi\|^2)^2}\sum_{i=1}^n(d\xi^i)^2,
\end{align}
where we note that the last three terms in the second equal sign cancel out. Also, if $\omega,\eta$ are $1$-forms, then $\omega\eta$ denotes the symmetrized tensor product $\frac{\omega\otimes \eta+\eta\otimes\omega}{2}$, so all the algebra done above makes perfect sense. So, we have that the Riemannian metric of the sphere, in sterographic coordinates is conformal to the Riemannian metric on the plane $\Bbb{R}^n$. From here, the volume measure is easily computed via the square root of the determinant:
\begin{align}
dV_{S^n}&=\sqrt{\left|\det g_{ab}(\xi)\right|}\,d\mu_n=\sqrt{\left(\frac{4}{(1+\|\xi\|^2)^2}\right)^n}\,d\mu_n=
\left(\frac{2}{1+\|\xi\|^2}\right)^n\,d\mu_n,
\end{align}
where $d\mu_n$ denotes the pullback of the Lebesgue measure on $\Bbb{R}^n$ to $S^n\setminus\{\text{north pole}\}$, via the stereographic projection map. In the case $n=2$, this coincides with what you wrote.