1. p ∧ ¬q = T
2. (q ∧ p) → r = T
3.¬p → ¬r = T
4.(¬q ∧ p) → r = T
From Eq 1, we got p = T and q = F
Now Apply value of P in Eq 3, we get:
$$\begin{array}{cc}
p&¬p&r&¬r&¬p\to r\\ \hline
\color{red}{\text{T}}&\color{red}{\text{F}}&\color{blue}{\text{T}}&\color{red}{\text{F}}&\color{red}{\text{T}}\\
\color{red}{\text{T}}&\color{red}{\text{F}}&\color{blue}{\text{F}}&\color{red}{\text{T}}&\color{red}{\text{T}}\\
\text{F}&\text{T}&\text{T}&\text{F}&\text{F}\\
\text{F}&\text{T}&\text{F}&\text{T}&\text{T}
\end{array}$$
Now there are two possibilities when ¬p→r is T, and ¬p is F but the r has two separate values.
Is this System consistent or inconsistent?