I prefer to solve this problem in this way : $1=>2=>3=>4=>1$
$1=>2$ :
$ax \in E(S)$ means $\forall k \in S$ ; $k(ax)=(ax)k=k$ . because $x$ is unique and $a\in S$ so let $k = a$ then $a(ax)=(ax)a=a$ so $axa=a$
$2=>3$ :
First of all it's better to use $a^*$ insist of $x$.
so $2$ will be like this : $\forall a \in S \exists! a^* \in S$ such that $a=aa^*a$.
We claim that $aa^*$ is the unique idempotent.
Prove : that is enough to show that $\forall b\in S ; (aa^*)b=b(aa^*)=b$
I) $aa^*a=a => aa^*aa^*=aa^*$
II) $aa^*aa^*=aa^* => aa^* (aa^*) aa^* = aa^* aa^* =>$because of $(I) $$ aa^* (aa^*) aa^* = aa^* => (aa^*)^* = aa^*$
III) Suppose that $\exists X , X\in S$ and $a^*X=a^*$
So we have $a^*X=a^* => aa^*X=aa^* => aa^* (X) aa^* =aa^*aa^*=>$ because of $(I)$ $aa^* (X) aa^* =aa^*$ that means $X = (aa^*)^* = aa^*$(because of $(II)$) so we can say $a^*aa^*=a^*$
IV) We will show that there is $X\in S$ that $\forall A,B \in S;$ $ BX=A$
$BX=A => A^*BX=A^*A => A^*B(X)A^*B =(A^*AA^*)B =>$ because of $(III)$ $A^*B(X)A^*B =A^*B => X=(A^*B)^* \in S$ and also $B(A^*B)^* = A$
V) For all $a,b,x\in S$
Let $A=aa^*$ and $B=ax$
So we have : $(IV)$ $B(A^*B)^* = A => ax((aa^*)^*ax)^*=aa^* => $ because of $(II)$ $ax((aa^*)ax)^*=aa^* => ax((aa^*a)x)^*=aa^* => ax(ax)^*=aa^*$
Let $x = (b^*a)^* => ax = b $(because of IV)
Now we put that on main equation : $ax(ax)^*=aa^* => bb^*=aa^*$
VI) We will show that there is $X\in S$ that $\forall A,B \in S;$ $ XB=A$
$XB=A => XBA^*=AA^* => BA^*(X)BA^*=B(A^*AA^*)=>$ because of $(III)$ $BA^*(X)BA^*=BA^* => X=(BA^*)^* \in S$ and also $(BA^*)^*B=A$
VII) For all $a,b,x\in S$
Let $A=aa^*$ and $B=xa^*$
So we have : $(VI)$ $(BA^*)^*B=A => (xa^*(aa^*)^*)^*xa^*=aa^* => $because of $(II)$ $(xa^*aa^*)^*xa^*=aa^*=>$ because of $(III)$ $(xa^*)^*xa^*=aa^*$
Let $x=(a^*b^*)^* => xa = (a^*b^*)^* a = b$ (because of $VI$)
Now we put that on main equation : $(xa^*)^*xa^*=aa^* => b^*b=aa^*$
VIII) $(V)$ and $(VII) => \forall b\in S ; bb^*=b^*b$
Now we claim that $aa^*$ is the unique idempotent.
$\forall b\in S $
$b=bb^*b=b(bb^*)=$(because of $(V)$)$baa^*$
$b=bb^*b=(bb^*)b=$(because of$(VIII)$)$(b^*b)b=(aa^*)b$
So $b(aa^*)=(aa^*)b=b$
$3=>4$:
To prove this that's enough to show that $\forall a\in S : \exists! x \in S ; ax=xa=e$
$3=>\forall a\in S : \exists! x \in S ; axa=a $:
$axa=a => a(xa)=a => xa = e$
$axa=a => (ax)a=a => ax = e$
So : $ax=xa=e=>$ $x$ is inverse for $a$ and $x$ is unique $=> S$ is a group.
$4=>1$:
$S$ is a group so $\forall a\in S ; \exists!$ $ a^{-1};aa^{-1}=e \in E(S)$ so in $1$ let $x=a^{-1}$