An integral from MIT Integration Bee:
Show that $$I = \int_{0}^{2\pi}\cos(x)\cos(2x) \cos(3x)\,dx = \frac\pi2$$
This integral appeared in the 2019 paper. Below is my own solution:
$$\begin{align} I &= \int_{0}^{2\pi}\cos(x)\cos(2x)(\cos x\cos2x-\sin x\sin2x)\,dx \\[6pt] &= \int_{0}^{2\pi}\cos^2(x)\cos^2(2x) \,dx -\int_{0}^{2\pi}\cos(x)\cos(2x)\sin(x)\sin(2x)\, dx \end{align}$$
Replacing $\cos^2(x)= \frac{1+\cos(2x)}{2}$ for the first integral and $\sin(x)\cos(x)= \sin(2x)/2 $ for the second, we get
$$\begin{align} &\int_{0}^{2\pi}\frac{1+\cos(2x)}{2}\cos^2(2x) dx-\frac{1}{2}\int_{0}^{2\pi}\cos(2x)\sin^2(2x) dx \\[6pt] =\; &\frac{1}{2}\left(\int_{0}^{2\pi}\cos^2(2x)dx \, + \int_{0}^{2\pi}\cos(2x)\cos(4x)dx \right) \\[6pt] =\; &\frac{1}{2} \left( \pi + 0\right) \qquad \text{$\because$ the orthogonality of $\cos(mx)$} \\[6pt] =\; &\frac\pi2 \end{align}$$
This solution is rather awkward, and I'm sure there's a better and faster approach to this integral. Could anyone provide a more elegant solution(or a sketch of it)? Thanks.