Let $(\Omega,\mathcal A,\operatorname P)$ be a probability space, $(\mathcal F_t)_{t\ge0}$ be a filtration on $(\Omega,\mathcal A)$, $E$ be a $\mathbb R$-Banach space and $(X_t)_{t\ge0}$ be an $E$-valued process on $(\Omega,\mathcal A,\operatorname P)$. Remember that $X$ is called $\mathcal F$-Lévy if
- $X$ is $\mathcal F$-adapted;
- $X_0=0$;
- $X_{s+t}-X_s$ and $\mathcal F_s$ are independent for all $s,t\ge0$;
- $X_{s+t}-X_s\sim X_t$ for all $s,t\ge0$.
Assume $X$ is $\mathcal F$-Lévy and let $(Y_t)_{t\ge0}$ be another $E$-valued $\mathcal F$-Lévy process on $(\Omega,\mathcal A,\operatorname P)$ (or possibly on another probability space) with $X_t\sim Y_t$ for all $t\ge0$.
Are we able to show that $X$ and $Y$ have the same (finite-dimensional) distribution(s)?
EDIT: To be precise, the question is whether we can show that $$\operatorname P\left[X_{t_1}\in B_1,\ldots,X_{t_k}\in B_k\right]=\operatorname P\left[Y_{t_1}\in B_1,\ldots,Y_{t_k}\in B_k\right]\tag1$$ for all $B_1,\ldots,B_k\in\mathcal B(E)$, $k\in\mathbb N$ and $0\le t_1<\cdots<t_k$ or even $$\operatorname P\left[X\in B\right]=\operatorname P\left[Y\in B\right]\;\;\;\text{for all }B\in\mathcal B\left(E^{[0,\:\infty)}\right)\tag2.$$