Let's begin with the second assumption (i.e., Intermediate Step $2$) in the OP, namely
$$\gamma=\lim_{x\to 1^-}\left(-\log(1-x)-\int_1^\infty \frac{x^t}{t}\,dt\right)\tag2$$
Next, we use Intermediate Step $3$ of the OP to write $(2)$ as
$$\gamma=\lim_{x\to 1^-}\left(-\log(-\log(x))-\int_1^\infty \frac{x^t}{t}\,dt\right)\tag3$$
Enforcing the substitution $x=e^{-\varepsilon}$ in $(3)$ reveals
$$\begin{align}
\gamma&=\lim_{\varepsilon \to 0^+}\left(-\log(\varepsilon)-\int_1^\infty \frac{e^{-\varepsilon t}}{t}\,dt\right)\\\\
&=\lim_{\varepsilon \to 0^+}\left(\int_\varepsilon^1 \frac1t \,dt-\int_{\varepsilon}^\infty \frac{e^{- t}}{t}\,dt\right)\\\\
&=\lim_{\varepsilon\to 0^+}\left(\int_\varepsilon^1 \frac{1-e^{-t}}{t}\,dt\right)-\int_1^\infty \frac{e^{-t}}{t}\,dt\\\\
&=\int_0^1 \frac{1-e^{-t}}{t}\,dt-\int_1^\infty \frac{e^{-t}}{t}\,dt
\end{align}$$
as was to be shown!
NOTE: The enumerated point $2$ in the OP's attempt can be used to link together the Intermediate Step $1$ with the Intermediate Step $2$.
ALTERNATIVE APPROACH:
Note that we can write
$$\int_0^1 \frac{1-e^{-u}}{u}\,dx=\lim_{\varepsilon\to 0}\int_\varepsilon^1 \frac{1-e^{-u}}{u}\,du\tag1$$
Now, integrating by parts the integral on the right-hand side of $(1)$ reveals
$$\int_\varepsilon^1 \frac{1-e^{-u}}{u}\,du=-\log(\varepsilon)(1-e^{-\varepsilon})-\int_\varepsilon ^1 \log(u)e^{-u}\,du$$
In addition, integration by parts yields
$$\int_1^\infty \frac{e^{-u}}{u}\,du=-\int_1^\infty \log(u) e^{-u}\,du$$
Putting it together, we find that
$$\int_0^1 \frac{1-e^{-u}}{u}\,du-\int_1^\infty \frac{e^{-u}}{u}\,du=-\int_0^\infty \log(u) e^{-u}\,du=\gamma$$
as expected!